[1] 于靖军,郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU Jingjun, HAO Guangbo, CHEN Guimin, et al. State of-art of compliant mechanisms and their applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68. [2] LIU M, ZHAN J, ZHU B, et al. Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness[J]. Mechanism and Machine Theory, 2020, 143(4):103728. [3] 李博,孙文杰,姜磊,等. 电活性双稳态机构及其在软体机器人中应用的研究进展[J]. 机械工程学报, 2020, 56(19):43-52. LI Bo, SUN Wenjie, JIANG Lei, et al. Research progress of electroactive bistable mechanism and its application in soft robots[J]. Journal of Mechanical Engineering, 2020, 56(19):43-52. [4] 杜义贤,李涵钊,谢黄海,等. 基于序列插值模型和多重网格方法的多材料柔性机构拓扑优化[J]. 机械工程学报, 2018, 54(13):47-56. DU Yixian, LI Hanzhao, XIE Huanghai, et al. Topology optimization of multiple materials compliant mechanisms based on sequence interpolation model and multigrid method[J]. Journal of Mechanical Engineering, 2018,54(13):47-56. [5] ZHANG Z, CHEN G, FAN W, et al. A stiffness variable passive compliance device with reconfigurable elastic inner skeleton and origami shell[J]. Chinese Journal of Mechanical Engineering, 2020, 33(1):75. [6] 陈焱. 基于机构运动的大变形超材料[J]. 机械工程学报, 2020, 56(19):2-13. CHEN Yan. Review on kinematic metamaterials[J]. Journal of Mechanical Engineering, 2020, 56(19):2-13. [7] JENA A, SAMAL B B, KUMAR C S, et al. Analysis of electro-thermo-mechanical behavior of thin film Ni50-Ti50 and Ni40-Ti50-Cu10 shape memory alloys for application in thermal actuators[J]. Materials Today:Proceedings, 2021, 47:4578-4583. [8] LUO Z, TONG L, MA H, et al. Shape and topology optimization for electrothermomechanical microactuators using level set methods[J]. Journal of Computational Physics, 2009, 228:3173-3181. [9] ZHANG Z, YU Y, SONG P, et al. Automated manipulation of zebrafish embryos using an electrothermal microgripper[J]. Microsystem Technologies, 2020, 26(6):1823-1834. [10] GAMA G R S, COELHO C A A, GASPAR J, et al. An alternative approach to investigate V-shaped electrothermal microactuators in vacuum[J]. Journal of Microelectromechanical Systems, 2020, 29(3):387-396. [11] NI L, POCRATSKY R M, de BOER M P. Demonstration of tantalum as a structural material for MEMS thermal actuators[J]. Microsystems & Nanoengineering, 2021, 7(1):1-13. [12] 陈浩,王新杰,王炅,等. V型电热驱动器理论模型及动态特性[J]. 上海交通大学学报, 2021, 55(10):1263-1271. CHEN Hao, WANG Xinjie, WANG Jiong, et al. Theoretical model and dynamic performance of V-shaped electrothermal actuator[J]. Journal of Shanghai Jiao Tong University, 2021, 55(10):1263-1271. [13] SIGMUND O. Design of multiphysics actuators using topology optimization-Part I:One-material structures[J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50):6577-6604. [14] DU Y X, CHEN L P, TIAN Q H, et al. Topology synthesis of thermomechanical compliant mechanisms with geometrical nonlinearities using meshless method[J]. Advances in Engineering Software, 2009, 40(5):315-322. [15] MELLO L A M, SALAS R A, SILVA E C N. On response time reduction of electrothermomechanical MEMS using topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 247:93-102. [16] CHO K H, PARK J Y, IM M G, et al. Reliability-based topology optimization of electro-thermal-compliant mechanisms with a new material mixing method[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(5):693-699. [17] RAMÍREZ-GIL F J, SILVA E C N, MONTEALEGRERUBIO W. Topology optimization design of 3D electrothermomechanical actuators by using GPU as a co-processor[J]. Computer Methods in Applied Mechanics and Engineering, 2016, 302:44-69. [18] XIA Q, SHI T. Multiphysics Topology optimization of thermal actuators by using the level set-based multiple-type boundary method[J]. International Journal of Computational Methods, 2020, 17(8):1950044. [19] HUGHES T J R, COTTRELL J A, BAZILEVS Y. Isogeometric analysis:CAD, finite elements, NURBS, exact geometry and mesh refinement[J]. Computer Methods in Applied Mechanics and Engineering, 2005, 194(39-41):4135-4195. [20] SEO Y D, KIM H J, YOUN S K. Shape optimization and its extension to topological design based on isogeometric analysis[J]. International Journal of Solids and Structures, 2010, 47(11-12):1618-1640. [21] 刘宏亮,杨迪雄. 基于IGA-SIMP法的连续体结构应力约束拓扑优化[J]. 计算力学学报, 2018, 35(2):144-151. LIU H, YANG D. IGA-SIMP method based stress-constrained topology optimization of continuum structures[J]. Chinese Journal of Computational Mechanics, 2018, 35(2):144-151. [22] GAO J, LUO Z, XIAO M, et al. A NURBS-based Multi-Material Interpolation (N-MMI) for isogeometric topology optimization of structures[J]. Applied Mathematical Modelling, 2020(81):818-843. [23] XU M, WANG S, XIE X. Level set-based isogeometric topology optimization for maximizing fundamental eigenfrequency[J]. Frontiers of Mechanical Engineering, 2019, 14:222-234. [24] NGUYEN C, ZHUANG X, CHAMOIN L, et al. Three-dimensional topology optimization of auxetic metamaterial using isogeometric analysis and model order reducion[J]. Computer Methods in Applied Mechanics and Engineering, 2020, 371:113306. [25] XIE X, WANG S, YE M, et al. Isogeometric topology optimization based on energy penalization for symmetric structure[J]. Frontiers in Mechanical Engineering, 2020, 15(1):100-122. [26] DING S, LI B, CHEN G, et al. Isogeometric topology optimization of compliant mechanisms using transformable triangular mesh (TTM) algorithm[J]. Structural and Multidisciplinary Optimization, 2021, 64(4):2553-2576. [27] QIAN X. Topology optimization in B-spline space[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 265:15-35 [28] WANG Y, LIAO Z, YE M, et al. An efficient isogeometric topology optimization using multilevel mesh, MGCG and local-update strategy[J]. Advances in Engineering Software, 2010, 139:102733. [29] GAO J, GAO L, LUO Z, et al. Isogeometric topology optimization for continuum structures using density distribution function[J]. International Journal for Numerical Methods in Engineering, 2019, 118(10):991-1017. [30] 占金青,刘天舒,刘敏,等. 考虑疲劳性能的柔顺机构拓扑优化设计[J]. 机械工程学报, 2021, 57(3):59-68. ZHAN Jinqing, LIU Tianshu, LIU Min, et al. Topological design of compliant mechanisms considering fatigue constraint[J]. Journal of Mechanical Engineering, 2021, 57(3):59-68. [31] ZHU B, ZHANG X, LIU M. et al. Topological and shape optimization of flexure hinges for designing compliant mechanisms using the level set method[J]. Chinese Journal of Mechanical Engineering, 2019, 32(1):13. [32] SVANBERG K. The methods of moving asymptotes-a new methods for structural optimization[J]. International Journal for Numerical Methods in Engineering, 1987, 24(2):359-373. |