[1] Raibert M,Blankespoor K,Nelson G,et al. Bigdog,the rough-terrain quadruped robot[J]. IFAC Proceedings Volumes,2008,41(2):10822-10825. [2] Katz B,Di Carlo J,Kim S. Mini cheetah:A platform for pushing the limits of dynamic quadruped control[C]//2019 International Conference on Robotics and Automation (ICRA). IEEE,2019:6295-6301. [3] Hwangbo J,Lee J,Dosovitskiy A,et al. Learning agile and dynamic motor skills for legged robots[J]. Science Robotics,2019,4(26):eaau5872. [4] Krotkov,E,Hoffman R. Terrain mapping for a walking planetary rover[J]. IEEE Transactionson Robotics and Automation,1994,10(6):728-739. [5] Belter D,Łabcki P,Skrzypczyński P. Estimating terrain elevation maps from sparse and uncertain multi-sensor data[C]//2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2012:715-722. [6] Fankhauser P,Bloesch M,Hutter M. Probabilistic terrain mapping for mobile robots with uncertain localization[J]. IEEE Robotics& Automation Letter,2018,3(4):3019-3026. [7] Angelova A,Matthies L,Helmick D M,et al. Fast terrain classification using variable length representation for autonomous navigation[J]. Proc. 21st IEEE Conf. Comput. Vis. Pattern Recognit.,2007(1):1-8. [8] Shirkhodaie A,Amrani R,Tunstel E. Soft computing for visual terrain perception and traversability assessment by planetary robotic systems[J]. Smc,2005,2:1848-1855. [9] Filitchkin P,Byl K. Feature-based terrain classification for littledog[C]//2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2012:1387-1392. [10] Filitchkin P. Visual terrain classification for legged robots[D]. Santa Barbara:University of California,2011. [11] Wu H,Liu B,Su W,et al. Optimum pipeline for visual terrain classification using improved bag of visual words and fusion methods[J]. Journal of Sensors,2017(1):1-25. [12] Chilian A,Hirschmuller H. Stereo camera based navigation of mobile robots on rough terrain[C]//IEEE/RSJ International Conference on Intelligent Robots& Systems. IEEE Press,2009:1. [13] Wooden D,Malchano M,Blankespoor K,et al. Autonomous navigation for BigDog[C]//2010 IEEE International Conference on Robotics and Automation. IEEE,2010:4736-4741. [14] Hauser K,Bretl T,Latombe J C,et al. Motion planning for legged robots on varied terrain[J]. The International Journal of Robotics Research,2008,27(11-12):1325-1349. [15] Jaillet L,Cortés J,Siméon T. Transition-based RRT for path planning in continuous cost spaces[C]//2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2008:2145-2150. [16] Perrin N,Stasse O,Baudouin L,et al. Fast humanoid robot collision-free footstep planning using swept volume approximations[J]. IEEE Transactions on Robotics,2011,28(2):427-439. [17] Belter D,Wietrzykowski J,Skrzypczyński P. Employing natural terrain semantics in motion planning for a multi-legged robot[J]. Journal of Intelligent& Robotic Systems,2019,93(3-4):723-743. [18] Ding L,Gao H,Deng Z,et al. Foot-terrain interaction mechanics for legged robots:Modeling and experimental validation[J]. The International Journal of Robotics Research,2013,32(13):1585-1606. [19] Gao H,Jin M,Ding L,et al. A real-time,high fidelity dynamic simulation platform for hexapod robots on soft terrain[J]. Simulation Modelling Practice and Theory,2016,68:125-145. [20] Silva M F,Machado J A T,Lopes A M. Modelling and simulation of artificial locomotion systems[J]. Robotica,2005,23(5):595-606. [21] Zhuang H,Gao H,Ding L,et al. Method for analyzing articulated torques of heavy-duty six-legged robot[J]. Chinese Journal of Mechanical Engineering,2013,26(4):801-812. [22] Lu D V,Hershberger D,Smart W D. Layered costmaps for context-sensitive navigation[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE,2014:709-715. [23] Hobson R D. FORTRAN IV programs to determine surface roughness in topography for the CDC 3400 computer[M]. Kansas:University of Kansas,1967. [24] Hobson R D. Surface roughness in topography:A quantitative approach[J]. Anesthesia Sanalgesia,1972,90(3):51-64. [25] McKean J,Roering J. Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry[J]. Geomorphology,2004,57(3-4):331-351. [26] Evans I S. Correlation structures and factor analysis in the investigation of data dimensionality:Statistical properties of the Wessex land surface,England[C]//International Symposium on Spatial Data Handling,Zurich. 1984:98-116. [27] Schmidt J,Evans I S,Brinkmann J. Comparison of polynomial models for land surface curvature calculation[J]. International Journal of Geographical Information Science,2003,17(8):797-814. |