[1] 王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9):2-13. WANG Tianmiao, TAO Yong. The present situation and industrialization development strategy of industrial robot technology in China[J]. Journal of Mechanical Engineering, 2014, 50(9):2-13. [2] LIU Huashan, HUANG Yong. Bounded adaptive output feedback tracking control for flexible-joint robot manipulators[J]. Journal of Zhejiang University-Science (Applied Physics & Engineering), 2018, 19(7):557-578. [3] 李成刚, 崔文, 尤晶晶. 多连杆柔性关节机器人的神经网络自适应反演控制[J]. 上海交通大学学报, 2016, 50(7):1096-1101. LI Chenggang, CUI Wen, YOU Jingjing. Neural network adaptive inversion control of multi-link flexible joint robot[J]. Journal of Shanghai Jiaotong University, 2016, 50(7):1096-1101. [4] 梁明轩, 李正刚, 唐任仲. 基于柔性多体动力学的机械臂结构优化设计[J]. 中国机械工程, 2017, 28(21):2562-2566. LIANG Mingxuan, LI Zhenggang, TANG Renzhong. Optimal design of manipulator structure based on flexible multibody dynamics[J]. China Mechanical Engineering, 2017, 28(21):2562-2566. [5] 王海, 付邦晨, 薛彬. 六自由度柔性关节机械臂的动力学分析[J]. 中国机械工程, 2016, 27(8):1096-1101. WANG Hai, FU Bangchen, XUE Bin. Dynamic analysis of six-dof flexible joint manipulator[J]. China Mechanical Engineering, 2016, 27(8):1096-1101. [6] 孔向东, 钟万勰. 柔性机械臂动力学方程的精细时程积分法[J]. 机器人, 1998, 20(5):379-381. KONG Xiangdong, ZHONG Wanxie. Precise time-integration method for dynamic equation of flexible manipulator[J]. Robot, 1998, 20(5):379-381. [7] WASFY T, NOOR A. Computational strategies for flexible multibody systems[J]. Advances in Mechanics, 2006, 56(6):553-613. [8] SCHIEHLEN W. Computational dynamics:theory and applications of multibody systems[J]. European Journal of Mechanics, 2006, 25(4):566-594. [9] BROGLIATO B, TEN A, PAOLI L, et al. Numerical simulation of finite dimensional multibody nonsmooth mechanical systems[J]. Applied Mechanics Reviews, 2016, 55(2):107-149. [10] HAIRER E, WANNER G. Solving ordinary differential equations I:Nonstiff Problems[M]. Springer, Berlin, 1991. [11] KULIKOV G, WEINER R. Doubly quasi-consistent fixed-step size numerical integration of stiff ordinary differential equations with implicit two-step peer methods[J]. Journal of Computational and Applied Mathematics, 2018, 340(1):256-275. [12] BULUT H, INC M. Two step method for the numerical integration of stiff differential equations[J]. International Journal of Computer Mathematics, 2000, 73(3):333-340. [13] 王钟明,陈澎我,林国重. 一种改进型刚性常微分方程数值解法:T一R预估-校正法[J]. 北京理工大学学报,1990,10(1):18-25. WANG Zhongming, CHEN Shuwo, LIN Guozhong. An improved treanor's method for solving stiff ordinary differential equations——T-R preditor-corrector method[J]. Journal of Beijing Institute of Technology, 1990,10(1):18-25. [14] 廖文远, 李庆扬. 一类求解刚性常微分方程的半隐式多步RK方法[J]. 清华大学学报(自然科学版),1999,39(6):1-4. LIAO Wenyuan, LI Qingyang. One class of semi-implicit mulltistep Runge-Kutta method for stiff ODEs[J]. Journal of Tsinghua University (Science and Technology), 1999,39(6):1-4. [15] 王斌锐, 方水光, 金英连. 综合关节和杆件柔性的机械臂刚柔耦合建模与仿真[J]. 农业机械学报, 2012, 43(2):212-215. WANG Binrui, FANG Shuiguang, JIN Yinglian. Modeling and simulation of rigid-flexible coupling of manipulator with joint and bar flexibility[J]. Transactions of The Chinese Society of Agricultural Machinery, 2012, 43(2):212-215. [16] ZEIGLER B, LEE J. Theory of quantized systems:formal basis for DEVS/HLA distributed simulation environment[J]. In Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3369(1):49-58. [17] KOFMAN E, JUNCO S. Quantized-State Systems:a DEVS approach for continuous system simulation[J]. Transactions of the Society for Modeling and Simulation International, 2001, 18(1):2-8. [18] 杨祎,赵争鸣,檀添,等. 离散状态事件驱动仿真方法及自适应预估校正算法[J].电工技术学报,2017,32(12):34-41. YANG Yi, ZHAO Zhengming, TAN Tian, et al. Discrete State Event Driven Method and Self-Adapted Predictor-Corrector Algorithm[J]. Transactions of China Electrotechnical Society, 2017, 32(12):34-41. [19] CELLIER E, KOFMAN E. Continuous system simulation[M]. Springer, New York, 2006. [20] KOFMAN E. A third order discrete event simulation method for continuous system simulation[J]. Latin American Applied Research, 2006, 36(2):101-108. [21] MIGONI G, BORTOLOTTO M, KOFMAN E, et al. Linearly implicit quantization-based integration methods for stiff ordinary differential equations[J]. Simulation Modelling Practice & Theory, 2013, 35(6):118-136. [22] BERGERO F, CASELLA F, KOFMAN E, et al. On the efficiency of quantization-based integration methods for building simulation[J]. Building Simulation, 2017, 11(2):1-14. [23] 朱雨童,王江云,韩亮. 复杂航天器虚拟样机模型描述与集成[J]. 计算机集成制造系统,2010,16(11):2363-2368. ZHU Yutong, WANG Jiangyun, HAN Liang. Description and integration of complex spacecraft virtual prototype model[J]. Computer Integrated Manufacturing Systems, 2010, 16(11):2363-2368. [24] 朱雨童,王江云,韩亮. 基于量化状态积分的空间目标温度计算[J]. 红外与激光工程,2011,40(12):2345-2348. ZHU Yutong, WANG Jiangyun, HAN Liang. Space target temperature calculation based on quantized state integration[J]. Infrared & Laser Engineering, 2011, 40(12):2345-2348. [25] 檀添, 赵争鸣, 李帛洋,等. 基于离散状态事件驱动的电力电子瞬态过程仿真方法[J]. 电工技术学报, 2017, 32(13):41-50. TAN Tian, ZHAO Zhengming, LI Boyang, et al. A transient process simulation method for power electronics based on discrete state event-driven[J]. Transactions of China Electrotechnical Society, 2017, 32(13):41-50. [26] 李帛洋, 赵争鸣, 檀添,等. 后向离散状态事件驱动电力电子仿真方法[J]. 电工技术学报, 2017, 32(12):42-49. LI Boyang, ZHAO Zhengming,TAN Tian, et al. A Backword Discrete State Event Driven Simulation Method for Power Electronics Based on Finite State Machine[J]. Transactions of China Electrotechnical Society, 2017, 32(12):42-49. [27] 秦建, 沈沉,陈颖,等. 基于量子化状态驱动的时空自律仿真方法[J]. 中国电机工程学报,2017, 37(10):2869-2877. QIN Jian,SHEN Chen,CHEN Ying,et al. A spatio-temporally self-regulated simulation method based on quantized state system[J]. Proceedings of the Csee, 2017, 37(10):2869-2877. [28] KOFMAN E. Relative error control in quantization based integration[J]. Latin American Applied Research, 2009, 39(3):231-237. [29] 张丹丹. 柔性关节机器人动力学建模与控制[D]. 南京:南京理工大学,2017. ZHANG Dandan. Dynamics modeling and control of flexible joint robot[D]. Nanjin:Nanjing University of Science and Technology, 2017. |