[1] ALTINTAS Y, VERL A, BRECHER C, et al. Machine tool feed drives[J]. CIRP Annals-Manufacturing Technology, 2011, 60(2):779-796. [2] URIARTE L, ZATARAIN M, AXINTE D, et al. Machine tools for large parts[J]. CIRP Annals-Manufacturing Technology, 2013, 62(2):731-750. [3] VUKOSAVIC S N, STOJIC M R. Suppression of torsional oscillations in a high-performance speed servo drive[J]. Industrial Electronics, 1998, 45(1):108-117. [4] MAGNANI G, ROCCO P. Mechatronic analysis of a complex transmission chain for performance optimization in a machine tool[J]. Mechatronics, 2010, 20(1):85-101. [5] LI Yang, ZHAO Wanhua, LAN Shuhuai, et al. A review on spindle thermal error compensation in machine tools[J]. International Journal of Machine Tools & Manufacture, 2015, 95:20-38. [6] GUO Qianjian, FAN Shuo, XU Rufeng, et al. Spindle thermal error optimization modeling of a five-axis machine tool[J]. Chinese Journal of Mechanical Engineering, 2017, 30(3):746-753. [7] 孙岩辉,洪军,刘志刚,等. 考虑零部件制造误差的精密主轴几何回转精度计算方法[J]. 机械工程学报, 2017, 53(3):173-182. SUN Yanhui, HONG Jun, LIU Zhigang, et al. A calculating method for the geometric rotation accuracy of precision spindles considering the manufacturing errors of component parts[J]. Journal of Mechanical Engineering, 2017, 53(3):173-182. [8] 侯志泉,熊万里,吕浪,等. 轴颈形状误差对液体静压主轴回转精度的影响[J]. 机械工程学报, 2016, 52(15):147-154. HOU Zhiquan, XIONG Wanli, LÜ Lang, et al. Study on the influence of the journal shape error for hydrostatic spindle rotational error motion[J]. Journal of Mechanical Engineering, 2016, 52(15):147-154. [9] 陈雪峰,张兴武,曹宏瑞. 智能主轴状态监测诊断与振动控制研究进展[J]. 机械工程学报, 2018, 54(19):58-69. CHEN Xuefeng, ZHANG Xinwu, CAO Hongrui. Advances in condition monitoring, diagnosis and vibration control of smart spindles[J]. Journal of Mechanical Engineering, 2018, 54(19):58-69. [10] 雷涛,曹华军,朱利斌,等. 交变冲击载荷下高速干切滚刀主轴系统振动响应特性研究[J]. 机械工程学报, 2017, 53(11):113-121. LEI Tao, CAO Huajun, ZHU Libin, et al. Vibration response characteristics research for the hob spindle system of high-speed dry hobbing under alternating impact load[J]. Journal of Mechanical Engineering, 2017, 53(11):113-121. [11] CAO Hongrui, ZHANG Xinwu, CHEN Xuefeng. The concept and progress of intelligent spindles:A review[J]. International Journal of Machine Tools & Manufacture, 2017, 112:21-52. [12] 卢秉恒,赵万华,张俊,等. 高速高加速下的进给系统机电耦合[J]. 机械工程学报, 2013, 49(6):2-11. LU Bingheng, ZHAO Wanhua, ZHANG Jun, et al. Electromechanical coupling in the feed system with high speed and high acceleration[J]. Journal of Mechanical Engineering, 2013, 49(6):2-11. [13] 吕盾,李润泽,刘辉,等. 数控机床高速高加速进给下的跟随误差控制策略[J]. 西安交通大学学报, 2018, 52(12):25-31. LÜ Dun, LI Runze, LIU Hui, et al. A control strategy of tracking errors for numerical control machine tools at high speed and acceleration feeding[J]. Journal of Xi'an Jiaotong University, 2018, 52(12):25-31. [14] FERREIRA J A, DORLAND P, BEER F G. An active inline notch filter for reducing acoustic noise in drives[J]. Industry Applications, 2007, 43(3):798-804. [15] ERKORKMAZ K, KAMALZADEH A. High bandwidth control of ball screw drives[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1):393-398. [16] SUN Zheng, PRITSCHOW G, LECHLER A. Enhancement of feed drive dynamics using additional table speed feedback[J]. CIRP Annals-Manufacturing Technology, 2016, 65(1):357-360. [17] SUN Zheng, ZAHN P, VERL A, et al. A new control principle to increase the bandwidth of feed drives with large inertia ratio[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91:1747-1752. [18] SUN Zheng, PRITSCHOW G, ZAHN P, et al. A novel cascade control principle for feed drives of machine tools[J]. CIRP Annals-Manufacturing Technology, 2018, 67(1):389-392. [19] SENCER B, DUMANLI A. Optimal control of flexible drives with load side feedback[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1):357-360. [20] LIU Hui, ZHANG Jun, ZHAO Wanhua. An intelligent non-collocated control strategy for ball-screw feed drives with dynamic variations[J]. Engineering, 2017, 3(5):641-647. [21] SAKHM N, TABARRAIE M, FEYZI M R. A new robust speed-sensorless control strategy for high-performance brushless DC motor drives with reduced torque ripple[J]. Control Engineering Practice, 2014, 24(3):42-54. [22] BARATIERI C L, PINHEIRO H. New variable gain super-twisting sliding mode observer for sensorless vector control of nonsinusoidal back-EMF PMSM[J]. Control Engineering Practice, 2016, 52(7):59-69. [23] GAN Minggang, ZHANG Meng, ZHENG Chunye, et al. An adaptive sliding mode observer over wide speed range for sensorless control of a brushless DC motor[J]. Control Engineering Practice, 2018, 77(8):52-62. |