[1] 姚静,刘翔宇,李曼迪,等.一种小型化迷宫液压油箱设计与性能分析[J].机械工程学报,2021,57(24):83-92.YAO Jing,LIU Xiangyu,LI Mandi,et al. Design and characteristic analysis of miniaturized labyrinth hydraulic reservoir[J]. Journal of Mechanical Engineering,2021,57(24):83-92. [2] ZARDIN B,CILLO G,RINALDINI C A,et al. Pressure losses in hydraulic manifolds[J]. Energies,2017,10(310):1-21. [3] 胡建军,陈进,权凌霄,等.液压集成块湍流模型修正及内流特性分析[J].中国机械工程,2017,28(14):1708-1713.HU Jianjun, CHEN Jin, QUAN Lingxiao, et al.Turbulence model correction and internal flow characteristics analysis of hydraulic manifold blocks[J].China Mechanical Engineering,2017,28(14):1708-1713. [4] 姚静,宋英哲,段怡曼,等.基于增材制造的Y形流道压力损失建模研究[J].机械工程学报,2021,57(24):147-157.YAO Jing,SONG Yingzhe,DUAN Yiman,et al. Pressure loss modeling of Y-shaped flow channel based on additive manufacturing[J]. Journal of Mechanical Engineering,2021,57(24):147-157. [5] 张建启.基于增材制造的三通空间流道设计优化研究[D].秦皇岛:燕山大学,2021.ZHANG Jianqi. Design and optimization of three-way space flow channel based on additive manufacturing[D].Qinhuangdao:Yanshan University,2021. [6] ALSHARE A A,CALZONE F,MUZZUPAPPA M.Hydraulic manifold design via additive manufacturing optimized with CFD and fluid-structure interaction simulations[J]. Rapid Prototyping Journal,2019,25(9):1516-1524. [7] CHEKUROV S,LANTELA T. Selective laser melted digital hydraulic valve system[J]. 3D Printing and Additive Manufacturing,2017,4(4):215-221. [8] AIDRO. Hydraulics and 3D printing[EB/OL].[2021-09-20] . https://www.aidro.it/3d-printed-solutions.html. [9] RENISHAW. Hydraulic block manifold redesign for additive manufacturing[EB/OL].[2021-09-20] .https://www.renishaw.com. [10] 李莹,张玉莹,柳宝磊,等.基于增材制造的液压阀块流道过渡区优化研究[J].液压与气动,2021(1):56-66.LI Ying,ZHANG Yuying,LIU Baolei,et al. Optimization of flow channel transition area in hydraulic valve block based on additive manufacturing[J]. Chinese Hydraulics&Pneumatics,2021(1):56-66. [11] 马孟琪.基于3D打印的液压集成块自动优化设计[D].大连:大连理工大学,2018.MA Mengqi. Automatic design of hydraulic manifold block based on 3D printing[D]. Dalian:Dalian University of Technology,2018. [12] GIGRAS Y,GUPTA K. Artificial intelligence in robot path planning[J]. International Journal of Soft Computing and Engineering (IJSCE),2012,2(2):2231-2307. [13] LI Yanjie,WEI Wu,GAO Yong,et al. PQ-RRT*:An improved path planning algorithm for mobile robots[J].Expert Systems with Applications,2020,52:1-11. [14] HU Biao,CAO Zhengcai,ZHOU Mengchu. An efficient RRT-based framework for planning short and smooth wheeled robot motion under kinodynamic constraints[J].IEEE Transactions on Industrial Electronics,2020,68(4):3292-3302. [15] XIANNG Dan,LIN Han,OUYANG Jian,et al. Combined improved A*and greedy algorithm for path planning of multi-objective mobile robot[J]. Scientific Reports,2022,12(1):13273. [16] CERRONE C,CERULLI R,GOLDEN B. Carousel greedy:A generalized greedy algorithm with applications in optimization[J]. Computers&Operations Research,2017,85:97-112. [17] VANDERPLAATS G N. Numerical optimization techniques for engineering design with applications[M].New York:Mc Graw-Hill,1984. [18] LI D,HARTMANN R. Adjoint-based airfoil optimization with discretization error control[J]. International Journal for Numerical Methods in Fluids,2015,77(1):1-17. [19] 杨洋,刘学强,覃宁.基于伴随算子的翼尖小翼优化设计[J].航空计算技术,2012,42(3):85-88.YANG Yang,LIU Xueqiang,QIN Ning. Optimization design of transonic winglet based on discrete adjoint method[J]. Aeronautical Computing Technique,2012,42(3):85-88. [20] 黄江涛,刘刚,高正红,等.飞行器多学科耦合伴随体系的现状与发展趋势[J].航空学报,2020,41(5):6-29.HUANG Jiangtao,LIU Gang,GAO Zhenghong,et al.Current situation and development trend of multidisciplinary coupled adjoint system for aircraft[J].Acta Aeronautica et Astronautica Sinica,2020,41(5):6-29. |