机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 60-74.doi: 10.3901/JME.2025.21.060
• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇
李通甲1,2, 臧鹏翔1,2, 郭为忠1,2
收稿日期:2025-02-27
修回日期:2025-08-11
发布日期:2025-12-27
作者简介:李通甲,男,2000年出生。主要研究方向为磁吸附轮式机器人。E-mail:litongjia@sjtu.edu.cn基金资助:LI Tongjia1,2, ZANG Pengxiang1,2, GUO Weizhong1,2
Received:2025-02-27
Revised:2025-08-11
Published:2025-12-27
摘要: 核电站的安全壳作为最后一道安全屏障,具有至关重要的保护作用。传统的人工焊缝巡检效率低且具有一定的危险性,因此,机器人替代人工进行焊缝巡检具有重要的现实意义。以磁吸附轮式机器人为研究对象,针对其在复杂壁面环境中的定位、路径规划与控制展开了系统研究。首先,介绍磁吸附轮式机器人悬架结构,并提出了一种基于机器人内部传感器的定位算法,并结合焊缝分布地图与驱动力矩指标,设计了一种改进的遗传算法用于焊缝遍历路径规划。该方法优于传统的Fleury算法,能够提高路径的平稳性和经济性。针对恒定磁吸附力的局限性,提出了基于改进的深度确定性策略梯度(DDPG)算法的动态磁吸附力控制策略。使用MuJoCo、Gym和PyTorch搭建了机器人仿真环境,对不同磁吸附力条件下的机器人运动进行了模拟。通过改进的DDPG算法设计了动态磁吸附力控制策略,确保在足够磁吸附力的前提下,能有效降低能耗并提高稳定性。提出了基于YOLOv8的焊缝识别算法,并在机器人样机中进行了整机实验验证。最后,选择YOLOv8作为焊缝识别算法,并将训练后的模型部署至机器人中。研究成果为核电站、大型储罐、船舶舷侧等铁磁性结构的安全运维提供了一种高效、低风险的智能化解决方案,对推动我国核能、石化、船舶等行业的机器人化检测与维护具有重要示范意义和产业化推广价值。
中图分类号:
李通甲, 臧鹏翔, 郭为忠. 新型磁吸附轮式机器人定位、规划与控制算法[J]. 机械工程学报, 2025, 61(21): 60-74.
LI Tongjia, ZANG Pengxiang, GUO Weizhong. Location, Planning and Control Algorithm of a Novel Magnetic Adhesion Wheel Robot[J]. Journal of Mechanical Engineering, 2025, 61(21): 60-74.
| [1] 周洪宇. 第三次工业革命的新能源革命[J]. 决策与信息,2016(3):10-18. ZHOU Hongyu. The new energy revolution of the third industrial revolution[J]. Decision and Information,2016(3):10-18. [2] 王轶君,余功铭. 全球核电现状及发展前景展望[J]. 世界石油工业,2022,29(4):78-80. WANG Yijun,YU Gongming. Current situation and development prospect of global nuclear power[J]. World Petroleum Industry,2022,29(4):78-80. [3] ROMAO J C,TAVAKOLI M,VIEGAS C,et al. Inchworm climber:A light-weight biped climbing robot with a switchable magnet adhesion unit[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,NJ:IEEE,2015:3320-3325. [4] TAVAKOLI M,MARQUES L,ALMEIDA A T. OmniClimber:An omnidirectional light weight climbing robot with flexibility to adapt to non-flat surfaces[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway,NJ:IEEE,2012:4583-4588. [5] PARK C,BAE J,RYU S,et al. R-Track:Separable modular climbing robot design for wall-to-wall transition[J]. IEEE Robotics and Automation Letters,2021,6(2):1036-1042. [6] KELLEY L,OSTOVARI S,BURMEISTER A B,et al. Design and experimental validation of a simple controller for a multi-segment magnetic crawler robot[C]//Unmanned Systems Technology XVII. Bellingham,WA:SPIE,2015:94680N. [7] HONG S,UM Y,PARK J,et al. Agile and versatile climbing on ferromagnetic surfaces with a quadrupedal robot[J]. Science Robotics,2022,7(73):eadd1017. [8] SONG W,JIANG H,WANG T,et al. Design of permanent magnetic wheel-type adhesion-locomotion system for water-jetting wall-climbing robot[J]. Advances in Mechanical Engineering,2018,10(7):1-11. [9] WU M,GAO X,YAN W X,et al. New mechanism to pass obstacles for magnetic climbing robots with high payload,using only one motor for force‐changing and wheel‐lifting[J]. Industrial Robot:An International Journal,2011,38(4):372-380. [10] WU M,PAN G,ZHANG T,et al. Design and optimal research of a non-contact adjustable magnetic adhesion mechanism for a wall-climbing welding robot[J]. International Journal of Advanced Robotic Systems,2013,10(1):63.S. [11] KITAI S,TSURU K,HIROSE S. The proposal of swarm type wall climbing robot system “Anchor Climber”[C]//Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. Edmonton,AB,Canada:IEEE,2005:475-480. [12] WEN Jing,DUN Xiangming,MIAO Songhua,et al. Structural design and weld climbing characteristics of variable magnetic adsorption wall-climbing robot[J]. Robot,2011,33(4):7. [13] LI Z,XIAO C,LIU Z,GUO X. Intelligent robotics and applications[M]. Singapore:Springer International Publishing,2022. [14] LI P,DING X,REN W. Research on path planning of cloud robot in dynamic environment based on improved DDPG algorithm[C]//Proceedings of the 2021 China Automation Congress (CAC). Beijing,China:IEEE,2021:3561-3566. [15] WANG Xiaozheng. Research on control of permanent magnet adsorption robot based on improved DDPG algorithm[D]. Daqing:Northeast Petroleum University,2022. [16] ELARBI F. Genetic algorithm for the design of a class of fuzzy controllers:An alternative approach[J]. IEEE Transactions on Fuzzy Systems,2007,8(4):398-405. [17] ZHOU Yi. Research on path planning of mobile robot based on genetic algorithm[D]. Tianjin:Hebei University of Technology,2015. [18] WEN S,CHEN J,WANG S,et al. Path planning of humanoid arm based on deep deterministic policy gradient[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO). Kuala Lumpur,Malaysia:IEEE,2018:1755-1760. [19] LIU Yunping,JIANG Changsheng,ZHANG Tingting,et al. Finite time ring formation control of multiple UAVs considering internal collision avoidance[J]. Chinese Journal of Mechanical Engineering,2022,58(1):61-68. [20] SAMPEDRO C,RODRIGUEZ-RAMOS A,GIL I,et al. Image-based visual servoing controller for multirotor aerial robots using deep reinforcement learning[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid,Spain:IEEE,2018:979-986. [21] ZHANG B,PENG J. Uncertain programming model for chinese postman problem with uncertain weights[J]. Industrial Engineering and Management Systems,2012,11(1):18-25. [22] UHLENBECK G E,ORNSTEIN L S. On the theory of the brownian motion[J]. Physical Review,1930,36(5):823-831. [23] REDMON J,DIVVALA S,GIRSHICK R B,et al. You only look once:Unified,realtime object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston,MA,USA: IEEE,2015:779-788. [24] REDMON J,FARHADI A. YOLO9000:Better,faster,stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu,HI,USA:IEEE,2017: 6517-6525. [25] REDMON J,FARHADI A. YOLOv3:An incremental improvement[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Salt Lake City,UT,USA:IEEE,2018:89-95. [26] GIRSHICK R,DONAHUE J,DARRELL T,et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus,OH,USA:IEEE,2014: 580-587. [27] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision (ICCV). Santiago,Chile:IEEE,2015:1440-1448. [28] REN S Q,HE K M,GIRSHICK R,et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems (NeurIPS). Montreal,Canada:MIT Press,2015: 91-99. [29] XU H. Design and analysis of a novel magnetic adhesion robot with passive suspension[C]//Intelligent Robotics and Applications:15th International Conference,ICIRA 2022,Harbin,China,August 1-3,2022,Proceedings,Part II. Cham,Switzerland:Springer,2022:369-380. [30] XU Hao,GUO Weizhong. Wheeled robots:Innovation design and experiments[J]. Journal of Integration Technology,2022,11(4):3-18. [31] CHEN Z,WANG Y,CHEN H,et al. A magnetic multi-layer soft robot for on-demand targeted adhesion[J]. Nature Communications,2024,15:644. [32] CHRISTEN S,NOGUEIRA M G,HILLIGES O. HiDe: Hierarchical reinforcement learning for dexterous manipulation[C]//Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Singapore:IEEE,2023:7654-7660. [33] DU D,HAN S,QI N,et al. Reinforcement learning for safe robot control using control Lyapunov-barrier functions[J]. IEEE Transactions on Robotics,2024,40(2):1050-1065. [34] RODWELL C,TALLAPRAGADA P. Physics-informed reinforcement learning for motion control of a fish-like swimming robot[J]. Scientific Reports,2023,13:11427. [35] RADAIDEH M I,WOLVERTON I,JOSEPH J,et al. Physics-informed reinforcement learning optimization of nuclear assembly design[J]. Nuclear Engineering and Design,2023,405:112134. [36] TAYAL M,SINGH A,KOLATHAYA S,et al. A physics-informed machine learning framework for safe and optimal control of autonomous systems[J]. IEEE Robotics and Automation Letters,2025,10(1):210-217. [37] RODWELL C,TALLAPRAGADA P. Physics-informed reinforcement learning for motion control of a fish-like swimming robot[J]. Scientific Reports,2023,13: 11427. [38] LIU Q,JI Z,XU W,et al. Knowledge-guided robot learning on compliance control for robotic assembly task with predictive model[J]. Expert Systems with Applications,2023,234:121037. [39] ALGARÍN-PINTO J A,GARZA-CASTAÑÓN L E,VARGAS-MARTÍNEZ A,et al. Intelligent motion control to enhance the swimming performance of a biomimetic underwater vehicle using reinforcement learning approach[J]. IEEE Access,2025,13:3972-3983. |
| [1] | 李仕华, 徐宏宇, 王森, 高雪原, 韩雪艳. 组合式弱耦合并联机构综合方法研究[J]. 机械工程学报, 2025, 61(17): 41-49. |
| [2] | 曾达幸, 许林淼, 范朝辉, 刘亚, 侯雨雷, 卢文娟. 仿中医按摩执行器按摩力分析及优化设计[J]. 机械工程学报, 2025, 61(15): 247-260. |
| [3] | 王森, 宋敬伟, 李浩然, 李仕华. 含间隙冗余混联机构高精度刚度建模方法[J]. 机械工程学报, 2025, 61(11): 72-85. |
| [4] | 杨文剑, 李永涛, 甘金强, 丁华锋. 基于连杆运动链转化的行星轮系拓扑综合及构型设计[J]. 机械工程学报, 2025, 61(11): 86-105. |
| [5] | 孙学敏, 李锐明, 荀致远, 姚燕安. 球面四杆Bricard-like机构的设计与研究[J]. 机械工程学报, 2025, 61(7): 338-348. |
| [6] | 杨廷力, 李菊, 罗玉峰, 沈惠平. 现代机构学的构建与发展的方法论思考[J]. 机械工程学报, 2025, 61(5): 138-152. |
| [7] | 王森, 李兵, 彭福军. 面向踝关节康复的自调心并联机构构型综合[J]. 机械工程学报, 2025, 61(5): 153-164. |
| [8] | 范小东, 史创, 王治易, 刘天明, 郭宏伟, 刘荣强. 固面可展开天线机构设计及运动学分析[J]. 机械工程学报, 2025, 61(3): 237-250. |
| [9] | 宋轶民, 王睿哲, 连宾宾, 李祺, 孙涛. 基于数字孪生技术的并联机器人筒段类部组件装配系统[J]. 机械工程学报, 2025, 61(1): 44-59. |
| [10] | 黄海波, 毛毅, 黄福强, 王汝贵. 基于物体轮廓的GXU-grasper手指传动性能分析[J]. 机械工程学报, 2025, 61(1): 71-81. |
| [11] | 梁栋, 庞书康, 宋轶民, 畅博彦, 金国光, 孙涛. 一类新型末端铰接高速并联机器人建模与动力尺度综合[J]. 机械工程学报, 2024, 60(21): 38-55. |
| [12] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
| [13] | 牟德君, 陈先岭, 常雪龙, 胡波. (2-UPU+SPR)+(2-UPU+RPS)非对称混联机构末端约束及自由度分析[J]. 机械工程学报, 2024, 60(17): 272-282. |
| [14] | 于金须, 闫建华, 肖俊明, 李永泉, 谢平, 张立杰. 基于医工结合的指关节运动学模型建立与验证[J]. 机械工程学报, 2024, 60(15): 149-159. |
| [15] | 吴震, 李秦川, 叶伟. 基于固有频率的运动冗余并联机构位置逆解优选方法[J]. 机械工程学报, 2024, 60(13): 297-307. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
