• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 60-74.doi: 10.3901/JME.2025.21.060

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

新型磁吸附轮式机器人定位、规划与控制算法

李通甲1,2, 臧鹏翔1,2, 郭为忠1,2   

  1. 1. 上海交通大学重大装备设计与控制工程研究所 上海 200240;
    2. 上海交通大学机械系统与振动全国重点实验室 上海 200240
  • 收稿日期:2025-02-27 修回日期:2025-08-11 发布日期:2025-12-27
  • 作者简介:李通甲,男,2000年出生。主要研究方向为磁吸附轮式机器人。E-mail:litongjia@sjtu.edu.cn
    郭为忠(通信作者),男,1970年出生,博士,教授,博士研究生导师。主要研究方向为机构与并联机器人学、重大装备创新设计、机器运动设计与运动智能。E-mail:wzguo@sjtu.edu.cn
  • 基金资助:
    上海核之星核电科技有限公司和机械系统与振动全国重点实验室(MSVZD202008)资助项目。

Location, Planning and Control Algorithm of a Novel Magnetic Adhesion Wheel Robot

LI Tongjia1,2, ZANG Pengxiang1,2, GUO Weizhong1,2   

  1. 1. Institute of Equipment Design and Control Engineering, Shanghai Jiao Tong University, Shanghai 200240;
    2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240
  • Received:2025-02-27 Revised:2025-08-11 Published:2025-12-27

摘要: 核电站的安全壳作为最后一道安全屏障,具有至关重要的保护作用。传统的人工焊缝巡检效率低且具有一定的危险性,因此,机器人替代人工进行焊缝巡检具有重要的现实意义。以磁吸附轮式机器人为研究对象,针对其在复杂壁面环境中的定位、路径规划与控制展开了系统研究。首先,介绍磁吸附轮式机器人悬架结构,并提出了一种基于机器人内部传感器的定位算法,并结合焊缝分布地图与驱动力矩指标,设计了一种改进的遗传算法用于焊缝遍历路径规划。该方法优于传统的Fleury算法,能够提高路径的平稳性和经济性。针对恒定磁吸附力的局限性,提出了基于改进的深度确定性策略梯度(DDPG)算法的动态磁吸附力控制策略。使用MuJoCo、Gym和PyTorch搭建了机器人仿真环境,对不同磁吸附力条件下的机器人运动进行了模拟。通过改进的DDPG算法设计了动态磁吸附力控制策略,确保在足够磁吸附力的前提下,能有效降低能耗并提高稳定性。提出了基于YOLOv8的焊缝识别算法,并在机器人样机中进行了整机实验验证。最后,选择YOLOv8作为焊缝识别算法,并将训练后的模型部署至机器人中。研究成果为核电站、大型储罐、船舶舷侧等铁磁性结构的安全运维提供了一种高效、低风险的智能化解决方案,对推动我国核能、石化、船舶等行业的机器人化检测与维护具有重要示范意义和产业化推广价值。

关键词: 磁吸附机器人, 遍历路径规划, 深度确定性策略梯度算法, 磁吸附力控制, 焊缝识别

Abstract: The containment vessel of a nuclear power plant is regarded as the last line of defense and plays a crucial role in safety. Traditional manual inspection of weld seams is considered inefficient and poses certain risks. Therefore, the replacement of manual weld seam inspection with robots is endowed with significant practical significance. A systematic study is conducted on the positioning, path planning, and control of magnetically adsorbed wheeled robots in complex wall environments. Firstly, based on the structural configuration of the magnetically adsorbed wheeled robot, a positioning algorithm utilizing the robot's internal sensors is proposed. An enhanced genetic algorithm is designed for weld seam traversal path planning by integrating weld distribution mapping and driving torque metrics, demonstrating superior performance in path smoothness and energy efficiency compared to the conventional Fleury algorithm. To address limitations of fixed magnetic adsorption forces, a dynamic adsorption force control strategy is developed through an improved deep deterministic policy gradient (DDPG) algorithm. A simulation environment is constructed using MuJoCo, Gym, and PyTorch frameworks, where motor feedback control algorithms are validated and robot movements under varying adsorption forces are simulated. The optimized DDPG algorithm is employed to formulate a dynamic magnetic force regulation strategy that ensures adequate adhesion while minimizing energy consumption and enhancing stability. A weld seam recognition algorithm based on the YOLOv8 architecture is proposed and experimentally validated through prototype testing. Finally, YOLOv8’s superior performance is confirmed, leading to its deployment on the robotic system after model training. Finally, YOLOv8 was selected as the weld-seam detection algorithm and the trained model was deployed on the robot. The research results provide an efficient, low-risk, and intelligent solution for the safe operation and maintenance of ferromagnetic structures such as nuclear power plant containments, large storage tanks, and ship hulls. The work serves as an important demonstration for advancing robotic inspection and maintenance in China’s nuclear, petrochemical, and shipbuilding industries, and holds significant potential for wide industrial adoption.

Key words: magnetic adhesion robot, ergodic path planning, deep deterministic policy gradient algorithm, magnetic adhesion force control, weld identification

中图分类号: