机械工程学报 ›› 2025, Vol. 61 ›› Issue (1): 71-81.doi: 10.3901/JME.2025.01.071
• 机器人及机构学 • 上一篇
黄海波, 毛毅, 黄福强, 王汝贵
收稿日期:
2024-05-16
修回日期:
2024-09-26
发布日期:
2025-02-26
作者简介:
黄海波,男,1994年出生,博士研究生。主要研究方向为机器人学与机构学。E-mail:haibo.h@st.gxu.edu.cn基金资助:
HUANG Haibo, MAO Yi, HUANG Fuqiang, WANG Rugui
Received:
2024-05-16
Revised:
2024-09-26
Published:
2025-02-26
摘要: GXU-grasper是一种面向易碎易变形物体的自适应抓手,其手指驱动时的传动性能是此类抓手控制策略的理论基础。基于物体轮廓对GXU-grasper手指传动性能进行分析,给出一种基于物体轮廓的自适应抓手抓取驱动方案。首先,建立抓手指节和物体轮廓间的映射模型,对影响抓手传动性能的角度参数进行分析,其次,研究影响自适应抓手手指传动机构驱动关键参数,基于虚功原理,建立多级传动机构各连杆驱动力矩和驱动角度关系,对电机驱动机构进行分析并建立电机驱动滑块移动距离和第一指节单元驱动角度的数学模型,推导出影响抓手传动机构运动的驱动力矩,然后,以抓取不规则易变形的海绵物体为例,采用数值仿真对影响手指传动性能参数进行计算,最后,通过实验验证了GXU-grasper手指传动性能分析和抓取驱动方案的合理性。研究为此类自适应抓手驱动控制方法提供一种参考。
中图分类号:
黄海波, 毛毅, 黄福强, 王汝贵. 基于物体轮廓的GXU-grasper手指传动性能分析[J]. 机械工程学报, 2025, 61(1): 71-81.
HUANG Haibo, MAO Yi, HUANG Fuqiang, WANG Rugui. Transmission Performance Analysis of GXU-grasper Fingers Based on Object Contours[J]. Journal of Mechanical Engineering, 2025, 61(1): 71-81.
[1] NEGRELLO F,STUART H S,CATALANO M G. Hands in the real world[J]. Frontiers in Robotics and AI,2020,6:147. [2] PIAZZA C,GRIOLI G,CATALANO M G,et al. A century of robotic hands[J]. Annual Review of Control,Robotics,and Autonomous Systems,2019,2:1-32. [3] SALISBURY J K,CRAIG J J. Articulated hands:Force control and kinematic issues[J]. The International Journal of Robotics Research,1982,1(1):4-17. [4] JACOBSEN S C,WOOD J E,KNUTTI D F,et al. The UTAH/MIT dextrous hand:Work in progress[J]. The International Journal of Robotics Research,1984,3(4):21-50. [5] DAI J S,WANG Delun,CUI Lei. Orientation and workspace analysis of the multifingered metamorphic hand—Metahand[J]. IEEE Transactions on Robotics,2009,25(4):942-947. [6] WEI Guowu,DAI J S,WANG Shuxin,et al. Kinematic analysis an prototype of a metamorphic anthropomorphic hand with a reconfigurable palm[J]. International Journal of Humanoid Robotics,2011,8(3):459-479. [7] WEI An,WEI Ju,LU Xiaoyu,et al. Geometric design-based dimensional synthesis of a novel metamorphic multi-fingered hand with maximal workspace[J]. Chinese Journal of Mechanical Engineering,2021,34(1):41. [8] LI Changsheng,GU Xiaoyi,REN Hongliang. A cable-driven flexible robotic grasper with lego-like modular and reconfigurable joints[J]. IEEE/ASME Transactions on Mechatronics,2017,22(6):2757-2767. [9] DOLLAR A M,HOWE R D. The highly adaptive SDM hand:Design and performance evaluation[J]. The International Journal of Robotics Research,2010,29(5):585-597. [10] DECHEV N,CLEGHORN W L,NAUMANN. Multiple finger,passive adaptive grasp prosthetic hand[J]. Mechanism and Machine theory,2001,36(10):1157-1173. [11] JIN J J,ZHANG Wenzeng,SUN Zhenguo,et al. LISA Hand:Indirect self-adaptive robotic hand for robust grasping and simplicity[C]// 2012 IEEE International Conference on Robotics and Biomimetics (ROBIO). IEEE,2012:2393-2398. [12] WU P C,LIN N,LEI T,et al. A new grasping mode based on a sucked-type underactuated hand[J]. Chinese Journal of Mechanical Engineering,2018,31:1-9. [13] WANG Rugui,LI Xinpeng,HUANG Haibo. Design of thick panels origami-inspired flexible grasper with anti-interference ability[J]. Mechanism and Machine Theory,2023,189:105431. [14] WANG Daoming,XIONG Yan,ZI Bin,et al. Design,analysis and experiment of a passively adaptive underactuated robotic hand with linkage-slider and rack-pinion mechanisms[J]. Mechanism and Machine Theory,2021,155:104092. [15] KASHEF S R,AMINI S,AKBARZADEH A. Robotic hand:A review on linkage-driven finger mechanisms of prosthetic hands and evaluation of the performance criteria[J]. Mechanism and Machine Theory,2020,145:103677. [16] CHENG Ming,FAN Shaowei,YANG Dapeng,et al. Design of an underactuated finger based on a novel nine-bar mechanism[J]. Journal of Mechanisms and Robotics,2020,12(6):065001. [17] WANG Rugui,XU Runhao,HUANG Haibo. Design and analysis of a multi-knuckle coupled grasper with equal angles at each knuckle during motion[J]. Journal of Mechanical Design,2023,145(6):063303. [18] 金波,林龙贤. 果蔬采摘欠驱动机械手爪设计及其力控制[J]. 机械工程学报,2014,50(19):1-8. JIN Bo,LIN Longxian. Design and force control of an underactuated robotic hand for fruit and vegetable picking[J]. Journal of Mechanical Engineering,2014,50(19):1-8. [19] CHENG Ming,JIANG Li,NI Fengle,et al. Design of a highly integrated underactuated finger towards prosthetic hand[C]// 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). IEEE,2017:1035-1040. [20] 乔尚岭,刘荣强,郭宏伟,等. 3-DOF索杆桁架式欠驱动机械手运动控制[J]. 机械工程学报,2020,56(23):78-88. QIAO Shangling,LIU Rongqiang,GUO Hongwei,et al. Motion control of 3-DOF under-actuated cable-truss robotic hand[J]. Journal of Mechanical Engineering,2020,56(23):78-88. [21] 马学思,戴建生. 基于抓持矩阵的二指多关节手抓持规划和丝传动设计[J]. 机械工程学报,2015,51(1):17-23. MA Xuesi,DAI Jiansheng. Grasp planning and tendon-driven design of two-fingered hand based on grasp matrix[J]. Journal of Mechanical Engineering,2015,51(1):17-23. [22] ZANG Xizhe,WANG Chao,ZHANG Pu,et al. A novel design of a multi-fingered bionic hand with variable stiffness for robotic grasp[J]. Journal of Mechanisms and Robotics,2023,15(4):045001. [23] XU Wenfu,ZHANG Heng,YUAN Han,et al. A compliant adaptive gripper and its intrinsic force sensing method[J]. IEEE Transactions on Robotics,2021,37(5):1584-1603. [24] WANG Rugui,HUANG Haibo,XU Ruhao,et al. Design of a novel simulated “soft” mechanical grasper[J]. Mechanism and Machine Theory,2021,158:104240. [25] WANG Rugui,HUANG Haibo,LI Xinpeng. Self-adaptive grasping analysis of a simulated “soft” mechanical grasper capable of self-locking[J]. Journal of Mechanisms and Robotics,2023,15(6):061006. [26] HUANG Haibo,LI Xinpeng,WANG Rugui. Dimensional analysis of transmission mechanism of novel simulated “soft” mechanical adaptive grasper[C]// International Conference on Mechanism and Machine Science. Singapore:Springer Nature Singapore,2022:533-547. [27] WANG R,HUANG F,HUANG H,et al. Configuration synthesis and screening method for multiple closed-loop unit tandem mechanisms[J]. Mechanism and Machine Theory,2024,202:105770. |
[1] | 梁栋, 庞书康, 宋轶民, 畅博彦, 金国光, 孙涛. 一类新型末端铰接高速并联机器人建模与动力尺度综合[J]. 机械工程学报, 2024, 60(21): 38-55. |
[2] | 赵欣, 黄金杰. 基于RSM-RVEA的FDM增材制造工艺参数优化方法[J]. 机械工程学报, 2024, 60(19): 277-297. |
[3] | 牟德君, 陈先岭, 常雪龙, 胡波. (2-UPU+SPR)+(2-UPU+RPS)非对称混联机构末端约束及自由度分析[J]. 机械工程学报, 2024, 60(17): 272-282. |
[4] | 于金须, 闫建华, 肖俊明, 李永泉, 谢平, 张立杰. 基于医工结合的指关节运动学模型建立与验证[J]. 机械工程学报, 2024, 60(15): 149-159. |
[5] | 吴震, 李秦川, 叶伟. 基于固有频率的运动冗余并联机构位置逆解优选方法[J]. 机械工程学报, 2024, 60(13): 297-307. |
[6] | 徐文琳, 彭羽, 何智成, 姜潮. 复杂路径规划的机构分区运动学拓扑构型设计[J]. 机械工程学报, 2024, 60(11): 62-73. |
[7] | 刘伟, 刘宏昭. 非结式消元7R双环球面机构运动学位移分析[J]. 机械工程学报, 2024, 60(7): 45-53. |
[8] | 畅博彦, 韩芳孝, 周杨, 金国光. 面向精梳任务的高速变胞机构冲击动力学研究[J]. 机械工程学报, 2024, 60(7): 54-65. |
[9] | 张雷雷, 赵延治, 赵铁石. 并联机构瞬轴面研究进展[J]. 机械工程学报, 2023, 59(21): 131-146. |
[10] | 姚鹏飞, 吕胜男, 张武翔, 丁希仑. 基于正四棱台Bricard单元的双环可展开天线机构构型设计[J]. 机械工程学报, 2023, 59(21): 147-156. |
[11] | 陆晨浩, 陈耀, 何若琪, 范维莹, 冯健. 基于深度神经网络的四折痕锥形折纸结构设计[J]. 机械工程学报, 2023, 59(21): 167-176. |
[12] | 占金青, 晏家坤, 蒲圣鑫, 朱本亮, 刘敏. 基于等几何分析的电热驱动柔顺机构拓扑优化设计[J]. 机械工程学报, 2023, 59(21): 177-187. |
[13] | 刘辛军, 于靖军, 谢福贵, 赵慧婵, 孟齐志. 行为机构学与高端装备创新设计[J]. 机械工程学报, 2023, 59(19): 202-212. |
[14] | 李海虹, 董晋安, 郭山国, 刘志奇. 动/静平台非一致型并联机构构型分析及设计方法[J]. 机械工程学报, 2023, 59(17): 116-125. |
[15] | 杨逸波, 汪满新. R(RPS&RP)&2-UPS并联机构位置精度可靠性建模与分析[J]. 机械工程学报, 2023, 59(15): 62-72. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||