• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (2): 222-235.doi: 10.3901/JME.2025.02.222

• 运载工程 • 上一篇    

扫码分享

一种兼顾运行距离与能耗的飞行车辆多模态任务路线规划方法

赵靖1,2, 王伟达1,2, 杨超1,2, 李颖1,2, 项昌乐1,2, 向真2, 昌磊2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工大学重庆创新中心 重庆 401122
  • 收稿日期:2024-02-10 修回日期:2024-08-05 发布日期:2025-02-26
  • 作者简介:赵靖,男,1997年出生,博士研究生。主要研究方向为飞行车辆的多模态路径规划与运动决策等智能行驶技术、高性能飞控技术。E-mail:zj@bit.edu.cn;王伟达(通信作者),男,1980年出生,博士,教授,博士研究生导师。主要研究方向为飞行车辆研发技术、机电复合传动技术、车辆动力学与控制技术。E-mail:wangwd0430@163.com
  • 基金资助:
    国家自然科学基金资助项目(51975048,52102449)。

Multi-modal Mission Route Planning Method for Flying Vehicles Considering Running Distance and Energy Consumption

ZHAO Jing1,2, WANG Weida1,2, YANG Chao1,2, LI Ying1,2, XIANG Changle1,2, XIANG Zhen2, CHANG Lei2   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401122
  • Received:2024-02-10 Revised:2024-08-05 Published:2025-02-26

摘要: 凭借着空地多域协同运行的特点,飞行车辆的路径规划问题扩大到了三维空间,有效提高任务完成的效率。传统的路径规划算法不再满足飞行车辆多模态三维路径的规划需求。因此,一种基于博弈学习兼顾车辆运行距离与能耗的多模态路径规划策略被提出。首先,考虑飞行车辆的飞行越障能力,设计一种新型的Q-learning奖励函数,引导车辆进行模态切换以探索尽可能短的二维地面距离。其次,双层追逐博弈用于生成模态切换时机与位置的决策序列,构建“间隔距离-能耗”复合效益表从而获取切换的纳什均衡解。通过车辆与环境的不断交互学习,效益表可实现不断更新,最终获得一系列兼顾车辆运行距离与能耗的模态切换动作集。最后,在40 km×40 km的任务地图中验证策略的有效性。该策略为飞行车辆规划的多模态路径比传统强化学习规划的地面行驶路径缩短了10.785 km的运行距离,而比距离最优的多模态路径降低了16.38%的路径能耗。当执行任务较紧急时,飞行车辆更侧重于运行距离的缩短,此时该策略为其规划的多模态路径比地面行驶路径缩短了11.933 km,能耗比距离最优的多模态路径降低了0.04%。

关键词: 飞行车辆, 多模态路径规划, 博弈学习, 运行距离, 路径能耗

Abstract: With the air-ground multi-domain cooperative operation, the path planning problem of flying vehicles is expanded to three-dimensional space, which effectively improves the task efficiency. Traditional path planning algorithms no longer meet the planning requirements of multi-modal three-dimensional paths for the flying vehicle. A multi-modal path planning strategy based on game learning is proposed, which considers running distance and energy consumption. Firstly, a new reward function of the Q-learning algorithm, considering the influence of flight obstacle crossing capability, is designed to guide the vehicle to explore the short two-dimensional ground distance by mode switching. Secondly, the two-layer pursuit-evasion game is presented for the decision sequence of switching timing and location, and the Nash equilibrium solution is obtained by constructing a “separation distance-energy consumption” compound benefit table. In the process of interactive learning between the vehicle and environment, this table is constantly updated and a series of mode switching decisions considering running distance and energy consumption is given. Finally, the proposed strategy is verified on a 40×40 km map. The multi-modal path of the proposed strategy is shortened by 10.785 km compared with the ground travel path of the traditional reinforcement learning algorithm. And the energy consumption is 16.38% lower compared to that of the multi-modal path with minimum running distance. When the task is more urgent, the flying vehicle focuses more on the shortening of the running distance. The multi-modal path is 11.933 km shorter than the ground travel path, and the energy consumption is 0.04% lower than that of the multi-modal path with minimum running distance.

Key words: flying vehicles, multi-modal path planning, game learning, running distance, energy consumption

中图分类号: