机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 21-39.doi: 10.3901/JME.2024.22.021
李淳, 陈雷, 司晓庆, 亓钧雷, 曹健
收稿日期:
2024-05-24
修回日期:
2024-08-16
出版日期:
2024-11-20
发布日期:
2025-01-02
作者简介:
李淳,男,1989年出生,博士,教授,博士研究生导师。主要研究方向为异种材料连接及接头残余应力测量。E-mail:chun.li@hit.edu.cn;曹健(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为陶瓷、复合材料与金属的连接组织与应力分析、异种金属的连接机理与性能优化、自蔓延反应连接与表面与界面行为。E-mail:cao_jian@hit.edu.cn
基金资助:
LI Chun, CHEN Lei, SI Xiaoqing, QI Junlei, CAO Jian
Received:
2024-05-24
Revised:
2024-08-16
Online:
2024-11-20
Published:
2025-01-02
About author:
10.3901/JME.2024.22.021
摘要: 陶瓷材料具有强度高、耐腐蚀性能好等优点,其与金属的连接结构可以满足航空航天、核能与化工等领域对结构的轻量化、高温与耐腐蚀日益提高的要求。但由于陶瓷与金属的热膨胀系数不匹配,焊接降温过程中会在接头内产生残余应力,削弱接头的连接质量。综述复合钎料法、中间层法与陶瓷表面结构设计法三种常用的陶瓷-金属接头残余应力调控方法的研究现状,并介绍超快激光与闪连两种新型局部加热陶瓷-金属焊接新方法的研究进展,讨论适用于陶瓷-金属接头残余应力测量方法及原理,并总结了陶瓷-金属接头残余应力分布测量的研究现状,最终展望了陶瓷-金属接头残余应力调控与测量未来的发展趋势。
中图分类号:
李淳, 陈雷, 司晓庆, 亓钧雷, 曹健. 陶瓷-金属接头残余应力调控研究综述[J]. 机械工程学报, 2024, 60(22): 21-39.
LI Chun, CHEN Lei, SI Xiaoqing, QI Junlei, CAO Jian. Review of the Research on the Control of the Residual Stress in Ceramic-metal Joints[J]. Journal of Mechanical Engineering, 2024, 60(22): 21-39.
[1] 董新保,任意,汪洋,等. 无压烧结碳化硅防弹陶瓷材料研究进展[J]. 硅酸盐通报,2024,43(6):2225-2240. DONG Xinbao,REN Yi,WANG Yang,et al. Research progress of pressureless sintered silicon carbide bulletproof ceramic materials[J]. Bulletin of the Chinese Ceramic Society,2024,43(6):2225-2240. [2] 陈浩,段平起,刘爱军,等. 不同量Ta的添加对Ti(C,N)基金属陶瓷显微组织和力学性能的影响[J]. 热处理,2024,39(3):12-16,20. CHEN Hao,DUAN Pingqi,LIU Aijun,et al. Effects of addition of different amounts of tantalum on microstructure and mechanical properties of Ti(C,N)-base cermet[J]. Heat Treatment,2024,39(3):12-16,20. [3] 张驰,刘富初,穆英朋,等. 基于浆料直写成形的多孔氧化铝陶瓷孔隙率与抗弯强度的相关性研究[J]. 机械工程学报,2024,60(6):1-9. ZHANG Chi,LIU Fuchu,MU Yingpeng,et al. Study on the correlation between porosity and flexural strength of porous alumina ceramic based on direct ink writing forming[J]. Journal of Mechanical Engineering,2024,60(6):1-9. [4] 高显己,辛本斌,张爱军,等. (TiZrNbMoTa)B2高熵陶瓷的制备与摩擦学性能研究[J]. 摩擦学学报,2024,DOI:10.16078/j.tribology.2023253. GAO Xianji,XIN Benbin,ZHANG Aijun,et al. Preparation and tribological properties of (TiZrNbMoTa)B2high entropy ceramics[J]. Tribology,2024,DOI:10.16078/j.tribology.2023253. [5] 齐晶晶,卢勇. 陶瓷基复合材料的特点和发展前景探讨[J]. 山东化工,2024,53(8):97-99. QI Jingjing,LU Yong. Discussion on the feature and future development on the ceramic based materials[J]. Shandong Chemical Industry,2024,53(8):97-99. [6] 李淳,王志权,司晓庆,等. 轻质金属与陶瓷连接研究综述[J]. 机械工程学报,2020,56(6):73-84. LI Chun,WANG Zhiquan,SI Xiaoqing,et al. Review on the research of the joining of lightweight metals and ceramics[J]. Journal of Mechanical Engineering,2020,56(6):73-84. [7] 赵经香,李希超,戴作强,等. 陶瓷/金属焊接技术研究现状及发展[J]. 材料科学与工程学报,2023,41(6):1011-1021. ZHAO Jingxiang,LI Xichao,DAI Zuoqiang,et al. Research status and development trend of joining ceramics to metals by welding technology[J]. Journal of Materials Science and Engineering,2023,41(6):1011-1021. [8] 唐群,楚建新,张晓勇,陶瓷-金属连接中的残余应力[J]. 电子工艺技术,2001(4):166-170. TANG Qun,CHU Jianxin,ZHANG Xiaoyong. The residul stress in ceramic-metal joint[J]. Electronics Process Technology,2001(4):166-170. [9] LI P,YAN Y,BA J,et al. The regulation strategy for releasing residual stress in ceramic-metal brazed joints[J]. Journal of Manufacturing Processes,2023,85:935-947. [10] WANG N,WANG D P,YANG Z W,et al. Interfacial microstructure and mechanical properties of zirconia ceramic and niobium joints vacuum brazed with two Ag-based active filler metals[J]. Ceramics International,2016,42(11):12815-12824. [11] YANG Z,LIN J,WANG Y,et al. Characterization of microstructure and mechanical properties of Al2O3/TiAl joints vacuum-brazed with Ag-Cu-Ti plus W composite filler[J]. Vacuum,2017,143:294-302. [12] ZHAO Y X,WANG M R,CAO J,et al. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler[J]. Materials & Design,2015,76:40-46. [13] ZHOU Y H,LIU D,NIU H W,et al. Vacuum brazing of C/C composite to TC4 alloy using nano-Al2O3 strengthened AgCuTi composite filler[J]. Materials & Design,2016,93:347-356. [14] DAI X,CAO J,WANG Z,et al. Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag-Cu composite filler:Microstructure and properties[J]. Ceramics International,2017,43(17):15296-15305. [15] YANG Z W,WANG C L,WANG Y,et al. Active metal brazing of SiO2-BN ceramic and Ti plate with Ag-Cu-Ti plus BN composite filler[J]. Journal of Materials Science & Technology,2017,33(11):1392-1401. [16] LI C,HUANG C,CHEN L,et al. Microstructure and mechanical properties of the SiC/Nb joint brazed using AgCuTi+B4C composite filler metal[J]. International Journal of Refractory Metals & Hard Materials,2019,85:105049. [17] WANG Y,WANG W,HUANG J,et al. Composite brazing of C/C composite and Ni-based superalloy using (Ag-10Ti)+TiC filler material[J]. Journal of Materials Processing Technology,2021,288:116886. [18] ZHANG S,LIN J,WANG C,et al. Improvement of microstructure and mechanical properties of Sapphire/ Kovar alloy joints brazed with Ag-Cu-Ti composite filler by adding B powders[J]. Journal of Manufacturing Processes,2023,99:243-253. [19] ZHANG S,YUAN Y,SU Y,et al. Interfacial microstructure and mechanical properties of brazing carbon/carbon composites to stainless steel using diamond particles reinforced Ag-Cu-Ti brazing alloy[J]. Journal of Alloys and Compounds,2017,719:108-115. [20] LIU D,LIU K,SONG Y,et al. Brazing of graphite to tungsten using graphene nanoplates reinforced TiNiCu composite filler[J]. Journal of Alloys and Compounds,2023,968:172107. [21] BA J,ZHENG X H,NING R,et al. C/SiC composite-Ti6Al4V joints brazed with negative thermal expansion ZrP2WO12 nanoparticle reinforced AgCu alloy[J]. Journal of the European Ceramic Society,2019,39(4):755-761. [22] SI X,CAO J,TALIC B,et al. A novel Ag based sealant for solid oxide cells with a fully tunable thermal expansion[J]. Journal of Alloys and Compounds,2020,831:154608. [23] JIANG H,LI C,MAO X,et al. Vacuum brazing of AlON and Ti2AlNb with LiAlSiO4 enhanced Ag-Cu-Ti composite fillers:Microstructure,mechanical properties and measurement of residual stress[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2022,846:143277. [24] WANG P,LIU X,WANG H,et al. Negative thermal expansion Y2Mo3O12 particles reinforced AgCuTi composite filler for brazing Cf/SiC and GH3536[J]. Materials Characterization,2022,185:111754. [25] WANG X,SI X,LI M,et al. Y2W3O12@SiO2 composite particles for regulating thermal expansion and interfacial reactions in BaZr0.1Ce0.7Y0.1Yb0.1O3 -d/AISI 441 joints[J]. Composites Part B-Engineering,2022,242:110108. [26] WANG X,LI C,SI X,et al. Brazing ZTA ceramic to TC4 alloy using the Cu foam as interlayer[J]. Vacuum,2018,155:7-15. [27] WANG Z,WANG G,LI M,et al. Three-dimensional graphene-reinforced Cu foam interlayer for brazing C/C composites and Nb[J]. Carbon,2017,118:723-730. [28] ZHU Q,LI S,HU K,et al. Enhanced mechanical properties and thermal cycling stability of Al2O3-4J42 joints brazed using Ag-Cu-Ti/Cu/Ag-Cu composite filler[J]. Ceramics International,2021,47(21):30247- 30255. [29] CAO J,ZHENG Z J,WU L Z,et al. Processing,microstructure and mechanical properties of vacuum- brazed Al2O3/Ti6Al4V joints[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2012,535:62-67. [30] BA J,JI X,WANG B,et al. In-situ alloying of BNi2+Ni interlayer for brazing C/C composites and GH3536 Ni-based superalloy[J]. Journal of Manufacturing Processes,2021,67:52-55. [31] PAN R,KOVACEVIC S,LIN T,et al. Control of residual stresses in 2Si-B-3C-N and Nb joints by the Ag-Cu-Ti plus Mo composite interlayer[J]. Materials & Design,2016,99:193-200. [32] SINGH M,FERNANDEZ J M,ASTHANA R,et al. Effect of Mo and W interlayers on microstructure and mechanical properties of Si3N4–nickel-base superalloy joints[J]. International Journal of Applied Ceramic Technology,2023,20(2):987-994. [33] GUO W,LI K,ZHANG H,et al. Low residual stress C/C composite-titanium alloy joints brazed by foam interlayer[J]. Ceramics International,2022,48(4):5260-5266. [34] WANG G,CAI Y,WANG W,et al. Brazing ZrB2-SiC ceramics to Inconel 600 alloy without and with Cu foam[J]. Journal of Manufacturing Processes,2019,41:29-35. [35] SUN R,ZHU Y,GUO W,et al. Microstructural evolution and thermal stress relaxation of Al2O3/Cr18Ni9Ti brazed joints with nickel foam[J]. Vacuum,2018,148:18-26. [36] YANG W,LIN J,AO R,et al. High shear strength and ductile ZrC-SiC/austenitic stainless steel joints bonded with Ti/Ni foam interlayer[J]. Ceramics International,2020,46(3):3036-3042. [37] WANG G,CAI Y,WANG W,et al. AgCuTi/ graphene-reinforced Cu foam:A novel filler to braze ZrB2-SiC ceramic to Inconel 600 alloy[J]. Ceramics International,2020,46(1):531-537. [38] LI M,SHI K,ZHU D,et al. Microstructure and mechanical properties of Si3N4 ceramic and (TiB+Y2O3)/ Ti matrix composite joints brazed with AgCu/Cu foam/AgCu multilayered filler[J]. Journal of Manufacturing Processes,2021,66:220-227. [39] MA Q,PU J,LI S G,et al. Introducing a 3D-SiO2-fiber interlayer for brazing SiC with TC4 by AgCuTi[J]. Journal of Advanced Joining Processes,2022,5:100082. [40] QIN Y,FENG J. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2009,525(1-2):181-185. [41] GUO S,SUN L,ZHENG Z,et al. Microstructure and corrosion behavior of Si3N4/316L joints brazed with Ag- Cu/Ag/Mo/Ag/Ag-Cu-Ti multilayer filler[J]. Electrochimica Acta,2021,379:138193. [42] GUO S,SUN L,FANG J,et al. Residual stress,microstructure and corrosion behavior in the 316L/Si3N4 joint by multi-layered braze structure-experiments and simulation[J]. Ceramics International,2022,48(22):32894-32907. [43] WANG P,LIN J,XU Z,et al. Negative thermal expansion of Sc2W3O12 interlayer with three-dimensional interpenetrating network structure for brazing C/SiC composites and GH3536[J]. Carbon,2023,201:765-775. [44] LUO Z,WANG G,ZHAO Y,et al. Microstructure and shear strength of SiC/Zr joint brazed with LiAlSiO4/ graphene-coated Cu-foam composite interlayer[J]. Ceramics International,2023,49(24):40073-40083. [45] YANG J H,ZHANG L X,SUN Z,et al. A novel composite interlayer assembled for C/SiC-GH99 brazed joints[J]. Journal of Manufacturing Processes,2019,38:543-548. [46] FENG J C,LIU D,ZHANG L X,et al. Effects of processing parameters on microstructure and mechanical behavior of SiO2/Ti-6Al-4V joint brazed with AgCu/Ni interlayer[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2010,527(6):1522-1528. [47] SUN Z,ZHANG L X,CHANG Q,et al. Active brazed Invar-SiO2f/SiO2 joint using a low-expansion composite interlayer[J]. Journal of Materials Processing Technology,2018,255:8-16. [48] GUO W,YU Z,DING Z,et al. Effect of Ni foam on the microstructure and properties of AlN ceramic/Cu brazed joint[J]. International Journal of Applied Ceramic Technology,2023,20(4):2610-2619. [49] XIONG H P,MAO W,XIE Y H,et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si,B)CrTi filler metal[J]. Materials Letters,2007,61(25):4662-4665. [50] WANG Z,BUTT H A,MA Q,et al. The use of a carbonized phenolic formaldehyde resin coated Ni foam as an interlayer to increase the high-temperature strength of C/C composite-Nb brazed joints[J]. Ceramics International,2022,48(6):7584-7592. [51] ZHANG L X,ZHANG B,SUN Z,et al. Brazing of ZrB2-SiC-C and GH99 with AgCuTi/SiC interpenetrating network structural composite as an interlayer[J]. Ceramics International,2020,46(8):10224-10232. [52] 常青,张丽霞. 先进功能材料钎焊连接研究进展[J]. 焊接学报,2022,43(12):1-11. CHANG Qing,ZHANG Lixia. Research progress on brazing of advanced functional materials[J]. Transactions of the China Welding Institution,2022,43(12):1-11. [53] 冯吉才. 异种材料连接研究进展综述[J]. 航空学报,2022,43(2):626413. FENG Jicai. Research progress on dissimilar materials joining[J]. Acta Aeronautica et Astronautica Sinica,2022,43(2):626413. [54] 杨高林,朱兆恒,李梓杉,等. 分区尺寸对选区激光熔化成形316L表面结构的影响[J]. 中国表面工程,2023,36(3):74-86. YANG Gaolin,ZHU Zhaoheng,LI Zishan,et al. Influence of divisional size on structural quality of 316L parts printed by selective laser melting[J]. China Surface Engineering,2023,36(3):74-86. [55] HERNANDEZ X,JIMENEZ C,MERGIA K,et al. An innovative joint structure for brazing Cf/SiC composite to titanium alloy[J]. Journal of Materials Engineering and Performance,2014,23(8):3069-3076. [56] LI G,ZHANG Y,ZHANG C,et al. Design,preparation and properties of online-joints of C/SiC-C/SiC with pins[J]. Composites Part B-Engineering,2013,48:134-139. [57] SHEN Y,LI Z,HAO C,et al. A novel approach to brazing C/C composite to Ni-based superalloy using alumina interlayer[J]. Journal of the European Ceramic Society,2012,32(8):1769-1774. [58] BA J,JI X,WANG B,et al. Microstructure design of C/C composites through electrochemical corrosion for brazing to Nb[J]. Journal of Materials Science & Technology,2022,104:33-40. [59] BA J,LI P,WANG B,et al. A novel brush surface structure of SiCf/SiC composites designed for brazing improvement[J]. Vacuum,2022,195:110700. [60] YANG Z W,WANG C L,HAN Y,et al. Design of reinforced interfacial structure in brazed joints of C/C composites and Nb by pre-oxidation surface treatment combined with in situ growth of CNTs[J]. Carbon,2019,143:494-506. [61] WANG Y,WANG W,HUANG J,et al. Joining of Cf/SiC composite and 304 stainless steel assisted by surface honeycomb modification[J]. Journal of the European Ceramic Society,2021,41(14):6824-6833. [62] CHICHKOV B N,MOMMA C,NOLTE S,et al. Femtosecond,picosecond and nanosecond laser ablation of solids[J]. Applied Physics a-Materials Science & Processing,1996,63(2):109-115. [63] VIHERIALA J,VILJANEN M R,KONTIO J,et al. Soft stamp UV-nanoimprint lithography for fabrication of laser diodes[C/CD]//Conference on Alternative Lithographic Technologies,San Jose,CA,2009. [64] VOROBYEV A Y,GUO C. Direct femtosecond laser surface nano/microstructuring and its applications[J]. Laser & Photonics Reviews,2013,7(3):385-407. [65] LI C,SI X,DAI X,et al. Understanding the effect of surface machining on the YSZ/Ti6Al4V joint via image based modelling[J]. Scientific Reports,2019,9:12027. [66] TAMAKI T,WATANABE W,NISHII J,et al. Welding of transparent materials using femtosecond laser pulses[J]. Japanese Journal of Applied Physics Part 2-Letters & Express Letters,2005,44(20-23):L687-L689. [67] STUART B C,FEIT M D,HERMAN S,et al. Nanosecond-to-femtosecond laser-induced breakdown in dielectrics[J]. Physical Review B,1996,53(4):1749-1761. [68] HANN S N,MACLEOD N,MORAWSKA P O,et al. Stress induced birefringence of glass-to-metal bonded components[C]//Conference on Emerging Imaging and Sensing Technologies for Security and Defence V / Conference on Advanced Manufacturing Technologies for Micro- and Nanosystems in Security and Defence III,Electr Network,2020. [69] OZEKI Y,INOUE T,TAMAKI T,et al. Direct welding between copper and glass substrates with femtosecond laser pulses[J]. Applied Physics Express,2008,1(8):082601. [70] CARTER R M,TROUGHTON M,CHEN J,et al. Towards industrial ultrafast laser microwelding:SiO2 and BK7 to aluminum alloy[J]. Applied Optics,2017,56(16):4873-4881. [71] WATANABE W. Volume gratings and welding of glass/ plastic by femtosecond laser direct writing[C/CD]// Nanophotonics Australasia Conference,Melbourne,Australia,2017. [72] LAFON R E,LI S X,MICALIZZI F,et al. Ultrafast laser bonding of glasses and crystals to metals for epoxy-free optical instruments[C]//Conference on Components and Packaging for Laser Systems VI,San Francisco,CA,2020. [73] NG C K,CHEN C,YANG Y,et al. Femtosecond laser micro-machining of three-dimensional surface profiles on flat single crystal sapphire[J]. Optics and Laser Technology,2024,170:110205. [74] PAN R,YANG D,ZHOU T,et al. Micro-welding of sapphire and metal by femtosecond laser[J]. Ceramics International,2023,49(13):21384-21392. [75] ZHANG L,WU H,WEN J,et al. Glass to aluminum joining by forming a mechanical pin structure using femtosecond laser[J]. Journal of Materials Processing Technology,2022,302:117504. [76] WANG H,KOU R,HARRINGTON T,et al. Electromigration effect in Fe-Al diffusion couples with field-assisted sintering[J]. Acta Materialia,2020,186:631-643. [77] COLOGNA M,RASHKOVA B,RAJ R. Flash Sintering of Nanograin Zirconia in <5 s at 850℃[J]. Journal of the American Ceramic Society,2010,93(11):3556-3559. [78] XIA J,REN K,WANG Y. One-second flash joining of zirconia ceramic by an electric field at low temperatures[J]. Scripta Materialia,2019,165:34-38. [79] XIA J,REN K,LIU W,et al. Ultrafast joining of zirconia ceramics using electric field at low temperatures[J]. Journal of the European Ceramic Society,2019,39(10):3173-3179. [80] XIA J,REN K,WANG Y. Flash joining of alumina ceramics under a small current density[J]. Journal of the European Ceramic Society,2021,41(4):2782-2789. [81] LI T,LIU Y,LI G,et al. High-performance flash joining of MgAl2O4 transparent ceramics[J]. Ceramics International,2022,48(21):32561-32565. [82] ZHOU L,LI C,SI X,et al. Flash joining of SiC at ultra-low temperature[J]. Journal of the European Ceramic Society,2023,43(6):2713-2717. [83] ZHOU L,LI C,SI X,et al. Flash brazing of SiC using Ag-Cu-Ti alloy at ultra-low temperature in air via electric field assistance[J]. Journal of the European Ceramic Society,2023,43(16):7708-7713. [84] ZHOU L,LI C,ZHANG C,et al. Achieving SiC joints with outstanding high-temperature property via flash brazing using FeCoCrNiCu high-entropy alloy[J]. Journal of the European Ceramic Society,2024,44(6):3767-3776. [85] ACEVEDO R,SEDLAK P,KOLMAN R,et al. Residual stress analysis of additive manufacturing of metallic parts using ultrasonic waves:State of the art review[J]. Journal of Materials Research and Technology-Jmr&T,2020,9(4):9457-9477. [86] LEVY A. Thermal residual stresses in ceramic-to-metal brazed joints[J]. Journal of the American Ceramic Society,1991,74(9):2141-2147. [87] BA J,JI X,LI H,et al. Nano tungsten reinforced carbon cloth interlayer for brazing C/SiC composites to Nb[J]. Journal of Manufacturing Processes,2020,58:1270-1273. [88] LIU X,WANG X,GUAN Z,et al. Improvement and validation of residual stress measurement in composite laminates using the incremental hole-drilling method[J]. Mechanics of Materials,2021,154:103715. [89] LOUHICHI M A,POULACHON G,LORONG P,et al. Modeling and validation of residual stresses induced by heat treatment of AA 7075-T6 samples toward the prediction of part distortion[J]. Machining Science and Technology,2023,27(3):247-267. [90] SINGH A,AGRAWAL A. Investigation of surface residual stress distribution in deformation machining process for aluminum alloy[J]. Journal of Materials Processing Technology,2015,225:195-202. [91] LIN J,MA N,LEI Y,et al. Measurement of residual stress in arc welded lap joints by cosα X-ray diffraction method[J]. Journal of Materials Processing Technology,2017,243:387-394. [92] VIDLER J,KOTOUSOV A,HUGHES J M,et al. Feasibility of early fatigue damage evaluation using the Neutron diffraction method[J]. Engineering Failure Analysis,2022,141:106603. [93] ZAYTSEVA IV,PUGACHEV A M,OKOTRUB K A,et al. Residual mechanical stresses in pressure treated BaTiO3 powder[J]. Ceramics International,2019,45(9):12455-12460. [94] ZHAO G,LIU S,ZHANG C,et al. Quantitative testing of residual deformation in plate with varying thickness based on nonlinear ultrasound[J]. Materials & Design,2022,214:110402. [95] HRISTOFOROU E,KTENA A,VOURNA P,et al. Dependence of magnetic permeability on residual stresses in alloyed steels[J]. Aip Advances,2018,8(4):047201. [96] ALI A M,EGIZA M,MURASAWA K,et al. Effects of substrate temperature and intermediate layer on adhesion,structural and mechanical properties of coaxial arc plasma deposition grown nanodiamond composite films on Si substrates[J]. Surface & Coatings Technology,2021,417:127185. [97] BREEV I D,LIKHACHEV K V,YAKOVLEVA V V,et al. Stress distribution at the AlN/SiC heterointerface probed by Raman spectroscopy[J]. Journal of Applied Physics,2021,129(5):055304. [98] YORIFUJI M,AFFATATO S,TATEIWA T,et al. Wear simulation of ceramic-on-crosslinked polyethylene hip prostheses:A new non-oxide silicon nitride versus the gold standard composite oxide ceramic femoral heads[J]. Materials,2020,13(13):2917. [99] WU W,GUI J,ZHU T,et al. The effect of residual stress on whisker reinforcements in SiCw-Al2O3 composites during cooling[J]. Journal of Alloys and Compounds,2017,725:639-643. [100] ZHU Y,DING W,XU J,et al. An investigation of residual stresses in brazed cubic boron nitride abrasive grains by finite element modelling and raman spectroscopy[J]. Materials & Design,2015,87:342-351. [101] LI C,SI X,CHEN L,et al. Non-destructive measurement of residual stress distribution as a function of depth in sapphire/Ti6Al4V brazing joint via Raman spectra[J]. Ceramics International,2019,45(3):3284-3289. [102] SUN B J,XIAO B. Effects of process parameters on interfacial microstructure,residual stresses,and properties of tunnel furnace brazed diamonds[J]. Diamond and Related Materials,2018,85:98-103. [103] NOYAN I C,HUANG T C,YORK B R. Residual stress/strain analysis in thin films by X-ray diffraction[J]. Critical Reviews in Solid State and Materials Sciences,1995,20(2):125-177. [104] LI C,SI X,CAO J,et al. Residual stress distribution as a function of depth in graphite/copper brazing joints via X-ray diffraction[J]. Journal of Materials Science & Technology,2019,35(11):2470-2476. [105] GRUNDER T,PIQUEREZ A,BACH M,et al. Residual stress in brazing of submicron Al2O3 to WC-Co[J]. Journal of Materials Engineering and Performance,2016,25(7):2914-2921. [106] 陈天瑞,项延训,陈虎,等. 基于相位-频率测量的材料残余应力超声表征方法[J]. 机械工程学报,2016,52(22):9-14. CHEN Tianrui,XIANG Yanxun,CHEN Hu,et al. Ultrasonic characterization of residual stress in materials based on phase-frequency relationship[J]. Journal of Mechanical Engineering,2016,52(22):9-14. [107] 雷明凯,郭东明. 高性能表面层制造:基于可控表面完整性的精密制造[J]. 机械工程学报,2016,52(17):187-197. LEI Mingkai,GUO Dongming. High-performance surface layer manufacturing:A precision processing method based on controllable surface integrity[J]. Journal of Mechanical Engineering,2016,52(17):187-197. [108] 董世运,闫晓玲,徐滨士. 微观组织及残余应力对瑞利波评价激光熔覆层应力的影响[J]. 机械工程学报,2015,51(24):50-56. DONG Shiyun,YAN Xiaoling,XU Binshi. Influence of microstructure and residual stress on surface stress measurement of laser cladding layer by Rayleigh wave[J]. Journal of Mechanical Engineering,2015,51(24):50-56. [109] 蔡建鹏,叶延洪,张彦杰,等. 坡口形式对Q345/ SUS304异种钢对接接头残余应力和变形的影响[J]. 机械工程学报,2015,51(10):55-61. CAI Jianpeng,YE Yanhong,ZHANG Yanjie,et al. Study on influences of groove type on welding residual stress and deformation in Q345/SUS304 dissimilar steel butt-weld[J]. Journal of Mechanical Engineering,2015,51(10):55-61. [110] WANG Renzhi,RU Jilai. Overall evaluation of the effect of residual stress induced by shot peening in the improvement of fatigue fracture resistance for Mmetallic materials[J]. Chinese Journal of Mechanical Engineering,2015,28(2):416-421. |
[1] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[2] | 邱文哲, 张臻, 王鹏, 刘邓华, 魏世川, 张国军. 激光浸液诱导冲击调控电火花线切割热变形行为[J]. 机械工程学报, 2024, 60(9): 273-285. |
[3] | 任志英, 黄子豪, 方荣政, 王秦伟, 莫继良, 秦红玲. 金属橡胶无序式网格互穿结构的热力学性能研究[J]. 机械工程学报, 2024, 60(8): 165-175. |
[4] | 申世全, 任锟, 李永国, 韩蕴生, 项琬婷, 耿赫阳. 金属表面异形区域上色轨迹自动规划[J]. 机械工程学报, 2024, 60(7): 258-265. |
[5] | 张婷婷, 许振波, 王艳, 卞功波, 王涛, 王文先. 高频脉冲电流辅助镁/铝合金一步轧焊复合板制备及界面接合机理[J]. 机械工程学报, 2024, 60(4): 305-315. |
[6] | 崔桂涵, 杨春利. 基于高强高韧焊丝的脉冲GMAW焊缝金属强韧化机理研究[J]. 机械工程学报, 2024, 60(4): 326-334. |
[7] | 台玉平, 朱晓阳, 李红珂, 于志浩, 张厚超, 张凡, 张广明, 赵娟, 赵佳伟, 黄友奇, 兰红波. 电场驱动复合微纳3D打印低频透明电磁屏蔽玻璃[J]. 机械工程学报, 2024, 60(3): 305-318. |
[8] | 顾磊, 王鹏程, 闫耀天, 陈海燕, 李文亚. 负膨胀材料在复合材料制备和钎焊中的研究进展[J]. 机械工程学报, 2024, 60(22): 1-20. |
[9] | 孙清洁, 陶玉洁, 刘一搏, 冯吉才. 钛/钢异种金属焊接研究进展综述[J]. 机械工程学报, 2024, 60(22): 40-57. |
[10] | 潘瑞, 冯英豪, 蒋凡, 陈树君. 界面间隙对纳秒激光连接石英玻璃/铜的影响[J]. 机械工程学报, 2024, 60(22): 68-75. |
[11] | 王颖, 木瑞洁, 牛士玉, 孙孔波, 杨振文. 高熵碳化物陶瓷及其钎焊接头的组织和力学性能[J]. 机械工程学报, 2024, 60(22): 76-85. |
[12] | 张贤昆, 石磊, 武传松, 刘小超, 高嵩. 钛/铝异种金属搅拌摩擦焊接数值模拟与金属间化合物层的演变预测[J]. 机械工程学报, 2024, 60(22): 106-115. |
[13] | 殷增斌, 俞科娟, 叶佳冬, 袁军堂. 具有温度感知功能的SiAlON智能刀具研究[J]. 机械工程学报, 2024, 60(21): 292-299. |
[14] | 裴昊男, 杜思哲, 罗明. W形金属封严环成形型面几何质量在机检测研究[J]. 机械工程学报, 2024, 60(20): 35-50. |
[15] | 唐九兴, 石磊, 武传松, 吴明孝, 高嵩. 中厚板铝/铜异种金属双面搅拌摩擦接头微观组织与力学性能[J]. 机械工程学报, 2024, 60(20): 88-98. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||