[1] PHAN D T, JUNG C W. Optically transparent and very thin structure against electromangnetic pulse (EMP) using metal mesh and saltwater for shielding windows[J]. Scientific Peports, 2021, 11(1):1-9. [2] PERIYASAMY A P, MUTHUSAMY L P, MILITK? J. Neural network model applied to electromagnetic shielding effectiveness of ultra-light Ni/Cu coated polyester fibrous materials[J]. Scientific Peports, 2022, 12(1):1-14. [3] HE D, ZHANG N, IQBAL A, et al. Multispectral electromagnetic shielding using ultra-thin metal-metal oxide decorated hybrid nanofiber membranes[J]. Communications Materials, 2021, 2(1):1-9. [4] NEDJEM Z, SEGHIER T, HADJADJ A. New multilayer arrangement of dielectric layers for enhancement of the magnetic shielding absorption at low frequency in the near field[J]. Journal of Materials Science:Materials in Electronics, 2016, 27(4):3202-3208. [5] ADRIANO U, BOTTAUSCIO O, ZUCCA M. Material efficiency in magnetic shielding at low and intermediate frequency[J]. IEEE Transactions on Magnetics, 2003, 39(5):3217-3219. [6] CHENG J, ZHANG H, NING M, et al. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers:The search for dielectric and magnetic synergy[J]. Advanced Functional Materials, 2022:2200123. [7] JIA L C, YAN D X, LIU X, et al. Highly efficient and reliable transparent electromagnetic interference shielding film[J]. ACS Applied Materials & Interfaces, 2018, 10(14):11941-11949. [8] IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding:A review[J]. Advanced Functional Materials, 2020, 30(47):2000883. [9] LIANG C, GU Z, ZHANG Y, et al. Structural design strategies of polymer matrix composites for electromagnetic interference shielding:A review[J]. Nano-Micro Letters, 2021, 13(1):1-29. [10] XIE Y, LIU S, HUANG K, et al. Ultra-broadband Strong Electromagnetic Interference Shielding with Ferromagnetic Graphene Quartz Fabric[J]. Advanced Materials, 2022:2202982. [11] JIANG D, MURUGADOSS V, WANG Y, et al. Electromagnetic interference shielding polymers and nanocomposites-a review[J]. Polymer Reviews, 2019, 59(2):280-337. [12] WAN Y J, ZHU P L, YU S H, et al. Anticorrosive, ultralight, and flexible carbon-wrapped metallic nanowire hybrid sponges for highly efficient electromagnetic interference shielding[J]. Small, 2018, 14(27):1800534. [13] YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials, 2020, 32(9):1906769. [14] ZHU X, XU Q, Li H, et al. Fabrication of high-performance silver mesh for transparent glass heaters via electric-field-driven microscale 3D Printing and UV-assisted microtransfer[J]. Advanced Materials, 2019, 31:1902479. [15] 周贺飞,兰红波,李红珂,等.基于电场驱动喷射沉积微尺度3D打印制造金属网栅透明电磁屏蔽玻璃的研究[J].机械工程学报, 2019, 55(15):56-63. ZHOU Hefei, LAN Hongbo, LI Hongke, et al. Metal-mesh transparent EMI shielding glass fabricated by electric-field-driven jet deposition micro-scale 3D printing[J]. Journal of Mechanical Engineering, 2019, 55(15):56-63. [16] JIN F, LIU J, ZHAO Y Y, et al. λ/30 inorganic features achieved by multi-photon 3D lithography[J]. Nature Communications, 2022, 13(1):1-10. [17] LIU Z, LI M, DONG X, et al. Creating three-dimensional magnetic functional microdevices via molding-integrated direct laser writing[J]. Nature Communications, 2022, 13(1):1-11. [18] BUGUÉS-CEBALLOS I, KEHAGIAS N, SOTOMAYOR-TORRES C M, et al. Embedded inkjet printed silver grids for ITO-free organic solar cells with high fill factor[J]. Solar Energy Materials and Solar Cells, 2014, 127:50-57. [19] CHEN X, WU X, SHAO S, et al. Hybrid printing metal-mesh transparent conductive films with lower energy photonically sintered copper/tin ink[J]. Scientific Reports, 2017, 7(1):1-8. [20] 兰红波,李涤尘,卢秉恒.微纳尺度3D打印[J].中国科学:技术科学, 2015, 45(9):919-940. LAN Hongbo, LI Dichen, LU Bingheng. Micro-and nanoscale 3D printing[J]. Sci Sin Tech,2015,45:919-940. [21] LIASHENKO I, ROSELL-LLOMPART J, CABOT A. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection[J]. Nature communications, 2020, 11(1):1-9. [22] 曹辉,张广明,杨建军,等.基于单平板电极电场驱动喷射沉积微纳3D打印[J].科学通报, 2021, 66(21):2745-2757. CAO Hui, ZHANG Guangming, YANG Jianjun, et al. Electric-field-driven jet deposition micro-nano 3D printing based on a single-plate electrode[J]. Chinese Science Bulletin, 2021, 66(21):2745-2757 [23] 刘明杨,齐习猛,朱晓阳,等.基于电场驱动喷射微3D打印和辊轮辅助热压印制造嵌入式金属网格柔性透明导电薄膜[J].科学通报, 2020, 65(12):1151-1162. LIU Mingyang, QI Ximeng, ZHU Xiaoyang, et al. Fabrication of embedded metal-mesh flexible transparent conductive film via electric-field-driven jet microscale 3D printing and roller-assisted thermal imprinting[J]. Chinese Science Bulletin, 2020, 65(12):1151-1162. [24] 许权,兰红波,赵佳伟,等.基于电场驱动熔融沉积直写和微转印大面积透明电极制造[J].机械工程学报, 2019, 55(23):216-225. XU Quan, LAN Hongbo, ZHAO Jiawei, et al. Large-area transparent electrodes fabricated by combining the electric-field-driven fusion deposition direct writing and micro-transfer[J]. Journal of Mechanical Engineering, 2019, 55(23):216-225. [25] ZHU X, LIU M, QI X, et al. Templateless, plating-free fabrication of flexible transparent electrodes with embedded silver mesh by electric-field-driven microscale 3D printing and hybrid hot embossing[J]. Advanced Materials, 2021, 33:2007772. [26] ZHANG B, LEE H, BYUN D. Electrohydrodynamic jet printed 3D metallic grid:Toward high-performance transparent electrodes[J]. Advanced Engineering Materials, 2020, 22(5):1901275. [27] LAI Z, ZHAO T, ZHU P, et al. Improved reliability of silver nanowire-based composites by electroplating:A theoretical and experimental study[J]. ACS Applied Electronic Materials, 2021, 3(8):3329-3337. [28] SOERL S, BELLET D, COLEMAN J N. Relationship between material properties and transparent heater performance for both bulk-like and percolative nanostructured networks[J]. ACS Nano, 2014, 8(5):4805-48. |