[1] FU X J, CUI T J. Recent progress on metamaterials:From effective medium model to real-time information processing system[J]. Progress in Quantum Electronic, 2019, 67:100223. [2] MEI H, YANG WQ, YANG D, et al. Metamaterial absorbers towards broadband, polarization insensitivity and tunability[J]. Optics and Laser Technology, 2022, 147:107627. [3] LI WC, XU LY, ZHANG Xu, et al. Investigating the effect of honeycomb structure composite on microwave absorption properties[J]. Composites Communications, 2020, 19:182-188. [4] XIE YB, YE SR, CHRISTOPHER R, et al. Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament[J]. Applied Physics Letters, 2017, 110(18):788-792. [5] LANDY NI, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. [6] YIN X, LONG C, LI J H, et al. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays[J]. Scientific Reports, 2015, 5(1):15367-5367. [7] LI W C, LIN L H, LI C S, et al. Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal[J]. Results in Physics, 2019, 12:278-86. [8] HE L H, DENG L W, LI Y H, et al. Wide-angle microwave absorption performance of polyurethane foams combined with cross-shaped metamaterial absorber[J]. Results in Physics, 2018, 11:769-776. [9] XU H B, BIE S W, XU Y S, et al. Broad bandwidth of thin composite radar absorbing structures embedded with frequency selective surfaces[J]. Composites Part A:Applied Science Manufacturing, 2016, 80:111-117. [10] JIANG W, YAN L L, MA H, et al. Electromagnetic wave absorption and compressive behavior of a three-dimensional metamaterial absorber based on 3D printed honeycomb[J]. Scientific Reports, 2018, 8(8):4817. [11] FAN Q F, HUANG Y X, CHEN M J, et al. Integrated design of component and configuration for a flexible and ultrabroadband radar absorbing composite[J]. Composites Science Technology, 2019, 176:81-89. [12] LUO H, CHEN F, WANG X, et al. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption[J]. Composites Part A:Applied Science and Manufacturing, 2019, 119:1-7. [13] WANG C X, CHEN M J, LEI H S, et al. Radar stealth and mechanical properties of a broadband radar absorbing structure[J]. Composites Part B:Engineering, 2017, 123:19-27. [14] LIANG Q X, YANG Z, GUO J Y, et al. A high-efficient tunable liquid metal-based electromagnetic absorbing metamaterial[J]. Journal of Materials Science:Materials in Electronics, 2020, 27(6):1-6. [15] CHOI W H, KIM J B, SHIN J H, et al. Circuit-analog (CA) type of radar absorbing composite leading-edge for wing-shaped structure in X-band:Practical approach from design to fabrication[J]. Composites Science Technology, 2014, 105(105):96-101. [16] DU Z Q, LIANG J G, CAI T, et al. Designing an ultra-thin and wideband low-frequency absorber based on lumped resistance[J]. Optics Express, 2022, 30(2):914-25. [17] QU S C, HOU Y X, SHENG P. Conceptual-based design of an ultrabroadband microwave metamaterial absorber[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(36):e2110490118. [18] NGUYEN T K T,CAO T N,NGUYEN N H,et al. Simple design of a wideband and wide-angle insensitive metamaterial absorber using lumped resistors for X-and Ku-bands[J]. IEEE Photonics Journal, 2021, 13(3):2200410. [19] ZHOU F K, FU Y F, TAN R Y, et al. Broadband and wide-angle metamaterial absorber based on the hybrid of spoof surface plasmonic polariton structure and resistive metasurface[J]. Optics Express, 2021, 29(21):34735-34747. [20] DENG R X, ZHANG K, LI M L, et al. Targeted design, analysis and experimental characterization of flexible microwave absorber for window application[J]. Materials and Design, 2019, 162:119-129. [21] WU YJ, LIN H, XIONG J, et al. A broadband metamaterial absorber design using characteristic modes analysis[J]. Journal of Applied Physics, 2021, 129(13):134902. [22] LIU R, ZHANG BZ, DUAN JP, et al. Composite structure-based transparent ultra-broadband metamaterial absorber with multi-applications[J]. Materials Research Express, 2020, 7(4):045803. [23] LI S Y, LIU L L, JIANG Y Y, et al. Ultrathin optically transparent metamaterial absorber for broadband microwave invisibility of solar panels[J]. Journal of Physics D:Applied Physics, 2022, 55(4):045101. [24] LUONG V D, ANH N N, TRUNG T B, et al. Effect of annealing temperature on electrical and thermal property of cold-rolled multi-walled carbon nanotubes reinforced copper composites[J]. Diamond and Related Materials, 2020, 108:107980. [25] HONG W T, YU Y C C, CHE N K, et al. 3D printed electronics:Processes, materials and future trends[J]. Progress in Materials Science, 2022, 127:100945. [26] 张策,伍宏志,闫春泽. 4D打印热塑性聚氨酯/钕铁硼磁性复合材料成形工艺与性能研究[J].机械工程学报, 2020, 56(15):80-89. ZHANG Ce, WU Hongzhi, YAN Chunze. Research on processing and properties of 4D printed thermoplastic polyurethane/NdFeB magnetic composites[J]. Journal of Mechanical Engineering, 2020, 56(15):80-89. [27] WANG Q, ZHANG S Y, LIU G M, et al. The mixture of silver nanowires and nanosilver-coated copper micronflakes for electrically conductive adhesives to achieve high electrical conductivity with low percolation threshold[J]. Journal of Alloys and Compounds, 2020, 820:153184. [28] YANG Z, LIANG Q X, DUAN Y B, et al. A 3D-printed lightweight broadband electromagnetic absorbing metastructure with preserved high-temperature mechanical property[J]. Composite Structures, 2021, 274:114330. [29] AL-KETAN O, SOLIMAN A, ALQUBAISI A M, et al. Nature-inspired lightweight cellular Co-continuous composites with architected periodic gyroidal structures[J]. Advanced Engineering Materials, 2018, 20(2):1700549. [30] 张金纳,王朝阳,朱世杰,等.碳纤维/聚醚醚酮单向带各向异性导电行为的尺度效应[J].复合材料学报, 2021, 38(3):780-787. ZHANG Jinna, WANG Chaoyang, ZHU Shijie, et al. Thickness effect of anisotropic conductive behavior of carbon fiber/polyetheretherketone unidirectional tape[J]. Acta Materiae Compositae Sinica, 2021, 38(3):780-787. |