机械工程学报 ›› 2024, Vol. 60 ›› Issue (24): 350-364.doi: 10.3901/JME.2024.24.350
梁朋伟1,2, 庞勇1,2, 任博3, 张帅1,2, 王沐晨1,2, 李清野1,2, 阚子云1,2, 宋学官1,2
收稿日期:
2024-01-16
修回日期:
2024-06-10
出版日期:
2024-12-20
发布日期:
2025-02-01
作者简介:
梁朋伟,男,1994年出生,博士研究生。主要研究方向为光机系统多学科耦合建模与优化设计。E-mail:lpw12104059@mail.dlut.edu.cn;宋学官(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为多学科耦合建模与优化设计、工业大数据挖掘及数据驱动的预测技术、装备/基础件智能化。E-mail:sxg@dlut.edu.cn
基金资助:
LIANG Pengwei1,2, PANG Yong1,2, REN Bo3, ZHANG Shuai1,2, WANG Muchen1,2, LI Qingye1,2, KAN Ziyun1,2, SONG Xueguan1,2
Received:
2024-01-16
Revised:
2024-06-10
Online:
2024-12-20
Published:
2025-02-01
摘要: 激光传输系统涉及光学、机械、热、流场等多个物理场,在其设计制造过程中,进行多学科耦合建模分析至关重要。通过分析系统的多场耦合关系,提出一种光-机-热-流多场耦合建模方法。首先构建机械、热和流场的耦合模型,实现力、热和光作用下耦合变量的求解;其次基于代理模型方法,实现空间不均匀折射率场的拟合与预测模型;然后结合Fermat原理、光线追迹算法、波前畸变分析方法,提出不均匀折射率场光束传输分析方法,实现多场耦合变量的融合,形成光-机-热-流多场耦合模型;最终完成在多场耦合作用下,光学元件位姿变化、光束指向偏差、波前畸变的分析计算。利用两个数值案例对该方法进行验证,并应用该方法分析讨论激光传输系统中的多场耦合问题,结果表明该方法可用于光机系统中各设计参量的分析研究,为光学系统、机械系统、热控系统、自适应光学系统的设计优化提供依据。
中图分类号:
梁朋伟, 庞勇, 任博, 张帅, 王沐晨, 李清野, 阚子云, 宋学官. 光-机-热-流多场耦合建模方法及其在激光传输系统中的应用[J]. 机械工程学报, 2024, 60(24): 350-364.
LIANG Pengwei, PANG Yong, REN Bo, ZHANG Shuai, WANG Muchen, LI Qingye, KAN Ziyun, SONG Xueguan. Multi-field Coupling Modeling Method for Optical-mechanical-thermal-fluid and Its Application in Laser Transmission Systems[J]. Journal of Mechanical Engineering, 2024, 60(24): 350-364.
[1] 郭东明. 高性能制造[J]. 机械工程学报,2022,58(21):225-242.GUO Dongming. High performance manufacturing[J]. Journal of Mechanical Engineering,2022,58(21):225-242. [2] 激光技术与应用2035发展战略研究项目综合组. 我国激光技术与应用2035发展战略研究[J]. 中国工程科学,2020,22(3):1-6.Research Group of Strategic Research on China’s Laser Technology and Its Application by 2035. Strategic research on China’s laser technology and its application by 2035[J]. Strategic Study of CAE,2020,22(3):1-6. [3] PHILIP S H,KUAN G,ARNOLD W R,et al. Habitable-zone exoplanet observatory baseline 4-m telescope:Systems engineering design process and predicted structural thermal optical performance[J]. Journal of Astronomical Telescopes Instruments and Systems,2020,6(3):034004. [4] 赵亮,张志刚,孙瑶. 高精度光学系统光机热耦合分析方法与实现[J]. 系统仿真学报,2023,35(6):1381-1394.ZHAO Liang,ZHANG Zhigang,SUN Yao. Opto-mechanical-thermal coupling analysis method and implementation of high-precision optical system[J]. Journal of System Simulation,2023,35(6):1381-1394. [5] 薛松,王从思,连培园,等. 面向波束指向的高频段大口径天线服役性能调控技术[J]. 机械工程学报,2022,58(17):16-25.XUE Song,WANG Congsi,LIAN Peiyuan,et al. Performance regulation method of the large antenna in service for improving the beam pointing accuracy[J]. Journal of Mechanical Engineering,2022,58(17):16-25. [6] 杨怿,陈时锦,张伟. 空间光学遥感器光机热集成分析技术综述[J]. 光学技术,2005(6):114-118,121.YANG Yi,CHEN Shijin,ZHANG Wei. Review of thermal-structural-optical integrated analysis of space remote sensor[J]. Optical Technique,2005(6):114-118,121. [7] 刘巨,薛军,任建岳. 空间相机光机热集成设计分析及关键技术研究综述[J]. 宇航学报,2009,30(2):422-427,480.LIU Ju,XUE Jun,REN Jianyue. Review of research on integration analysis of structural,thermal and optical with key technique of space camera[J]. Journal of Astronautics,2009,30(2):422-427,480. [8] 肖阳,徐文东,赵成强. 光机系统的一体化仿真分析[J]. 光学学报,2016,36(7):247-254.XIAO Yang,XU Wendong,ZHAO Chengqiang. Integrated simulation of opto-mechanical system[J]. Acta Optical Sinica,2016,36(7):247-254. [9] 马宏川,范宏波,林宇,等. 热像仪光机热集成分析综述[J]. 红外技术,2019,41(2):134-141. MA Hongchuan,FAN Hongbo,LIN Yu,et al. Review of thermal-structural-optical integration analysis of thermal imager[J]. Infrared Technology,2019,41(2):134-141. [10] 宫晓峰,刘健,陈建发,等. 光机热集成仿真在光学系统无热化设计中的应用研究[J]. 电光与控制,2023,30(2):106-110.GONG Xiaofeng,LIU Jian,CHEN Jianfa,et al. Research on application of structural-thermal-optical integration simulation in optical athermalization design[J]. Electronics Optics & Control,2023,30(2):106-110. [11] JEROEN H,MÜLLER M,RONALD H. Combined opto- mechanical analysis for modern optical instruments[C]// Proc. SPIE,Modeling,Systems Engineering,and Project Management for Astronomy VIII,24 July 2018,Austin,Texas,United States: SPIE,2018:07052D1-07052D11. [12] KLEBANOVA I M,DAVYDOV A N,KIRDINA L N,ea al. Transformation of the results of the finite-element analysis of optical-surface displacements for use in optical-analysis packages[J]. Journal of Optical Technology,2014,81(7):388-391. [13] 刘瑞婧,金光,郭金生,等. 飞轮扰动下大口径长焦距光学成像系统的视轴误差的分析与试验[J]. 机械工程学报,2020,56(11):151-160.LIU Ruijing,JIN Guang,GUO Jinsheng,et al. Analysis and test of line-of-sight error of large-aperture long focal length optical imaging system under reaction wheel disturbance[J]. Journal of Mechanical Engineering,2020,56(11):151-160. [14] JOSEPH P,PHILLIP S,ANTONIO T,et al. Optical quality of high-power laser beams in lenses[J]. Journal of the Optical Society of America. B,Optical Physics,2009,26(3):503-510. [15] 李福,阮萍,徐广州,等. 红外镜头的光机热集成分析研究[J]. 应用光学,2011,32(3):385-388.LI Fu,RUAN Ping,XU Guangzhou,et al. Integrated opto-mechanical-thermal analysis of infrared lens[J]. Journal of Applied Optics,2011,32(3):385-388. [16] 姬文晨,张宇,李茂忠. 透射式红外光学系统的光机热集成分析[J]. 红外技术,2015,37(8):691-695.JI Wenchen,ZHANG Yu,LI Maozhong. Integrated optomechanical-thermal analysis of refractive infrared optical system[J]. Infrared Technology,2015,37(8):691-695. [17] 张纪承,罗海燕,胡广骁,等. 空间外差拉曼光谱仪成像镜头光机热集成分析[J]. 应用光学,2018,39(3):332-338.ZHANG Jicheng,LUO Haiyan,HU Guangxiao,et al. Thermal/structural/ optical integrated analysis on spatial heterodyne raman spectrometer imaging lens[J]. Journal of Applied Optics,2018,39(3):332-338. [18] 任涛,于劲松,唐荻音,等. 基于数字孪生的机载光电探测系统性能退化建模研究[J]. 航空兵器,2019,26(2):75-80.Ren Tao,YU Jinsong,Tang Diyin,et al. Performance degradation prediction theory and method for airbor electro-optical detection system based on digital twin model[J]. Aero Weaponry,2019,26(2):75-80. [19] 吴卫,白瑜,陈驰. 光机热集成方法的红外系统应用[J]. 红外与激光工程,2019,48(6):414-419.WU Wei,BAI Yu,CHEN Chi. Application of optical,mechanical and thermal integration in infrared[J]. Infrared and Laser Engineering,2019,48(6):414-419. [20] 杜伟峰,刘永志,高文杰,等. 光电对抗平台变焦镜头被动消热差结构设计与光机热集成分析[J]. 激光与光电子学进展,2020,57(13):166-176.DU Weifeng,LIU Yongzhi,GAO Wenjie,et al. Analysis of passive athermalization structure design and integrated opto-mechanical-thermal of zoom lens of photoelectric countermeasure platform[J]. Laser & Optoelectronics Progress,2020,57(13):166-176. [21] YUAN Zhipeng,CHEN Liheng,HAN Hasiaoqier,et al. Optimal design of thermal control system for space optical remote sensor based on NSGA-II and pto-mechanical- thermal integration analysis[J]. Case Studies in Thermal Engineering,2023,43(2023):102813. [22] 吴斌,王谭,张卫国,等. 耦合场作用下光机系统成像质量分析研究[J]. 电光与控制,2018,25(9):71-74,92.WU Bin,WANG Tan,ZHANG Weiguo,et al. Imaging quality analysis of an opto-mechanical system under coupled fields[J]. Electronics Optics & Control,2018,25(9):71-74,92. [23] 金钢,刘顺发,李树民,等. 激光热效应对光束控制系统发射光束质量的影响[J]. 中国激光,2002(10):895-899.JIN Gang,LIU Shunfa,LI Shumin,ea al. Laser thermal effects in beam control system on the emitted laser quality[J]. Chinese Journal of Lasers,2002(10):895-899. [24] 饶鹏,刘文广,华卫红. 反射镜热畸变对高能激光系统输出光束质量的影响[J]. 光学与光电技术,2009,7(3):12-15.RAO Peng,LIU Wenguang,HUA Weihong. Thermal distortion influence of reflector on output beam quality of hel system[J]. Optics & Optoelectronic Technology,2009,7(3):12-15. [25] 贺敏波,任伟艳,张世强,等. 长时间出光条件下反射镜的热变形对光束质量的影响[J]. 激光与光电子学进展,2013,50(12):186-190. HE Minbo,REN Weiyan,ZHANG Shiqiang,et al. Influence of mirror thermal deformation on beam quality under laser long-time irradiation[J]. Laser & Optoelectronics Progress,2013,50(12):186-190. [26] 陈驰,董亭亭,潘海俊. 光致热效应的光机热集成分析方法[J]. 光学与光电技术,2015,13(3):64-70.CHEN Chi,DONG Tingting,PAN Haijun. Opto-thermal-mechanical integrated analysis method for opto-thermal effects[J]. Optics & Optoelectronic Technology,2015,13(3):64-70. [27] 胡小川,彭家琪,张彬. 变形镜热形变及其对光束质量的影响分析[J]. 中国激光,2015,42(1):45-53.HU Xiaochuan,PENG Jiaqi,ZHANG Bin. Thermal distortion of deformable mirror and its influence on beam quality[J]. Chinese Journal of Lasers,2015,42(1):45-53. [28] HAHN L,EBERHARD P. Transient dynamical- thermal- optical system modeling and simulation[J]. Journal of the European Optical Society-Rapid Publications,2021,17(1):5. [29] 孙运强,习锋杰,许晓军,等. 内通道流场与光场能量耦合的数值模拟[J]. 中国激光,2011,38(2):82-86.SUN Yunqiang,XI Fengjie,XU Xiaojun,at al. Model for the optical field and fluent field coupling effects[J]. Chinese Journal of Lasers,2011,38(2):82-86. [30] 胡鹏,张建柱,张飞舟. 高能激光系统内光路热效应建模与仿真[J]. 强激光与粒子束,2022,34(1):119-129.HU Peng,ZHANG Jianzhu,ZHANG Feizhou. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams,2022,34(1):119-129. [31] 王逍,洪建勋. 基于有限单元法和计算流体动力学的光机热集成仿真分析研究[J]. 光学与光电技术,2022,20(1):120-127.WANG Xiao,HONG Jianxun. Simulation analysis of optical machine thermal integration via finite element method and computational fluid dynamics[J]. Optics & Optoelectronic Technology,2022,20(1):120-127. [32] 牛盛光,郭亮,陆振玉,等. 基于光机热集成分析的大规模拼接焦面误差分配[J]. 中国光学,2022,15(5):1000-1006.NIU Shengguang,GUO Liang,LU Zhenyu,et al. Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis[J]. Chinese Optics,2022,15(5):1000-1006. [33] 张飞虎,王乙任,廖德锋,等. 光学元件全口径抛光中温度分布对元件面形的影响规律及其控制方法研究[J]. 机械工程学报,2022,58(15):46-54.ZHANG Feihu,WANG Yiren,LIAO Defeng,et al. Study on the influence of temperature distribution in the optical elements on the surface shape and its control method during full aperture polishing[J]. Journal of Mechanical Engineering,2022,58(15):46-54. [34] GAO Rong,LI Jinpeng,WANG Peng,et al. The opto-mechanical-thermal coupling analysis and verification of an all-aluminum freeform imaging telescope[J]. Symmetry (Basel),2022,14(11):2391. [35] LIU Youchen,SONG Zijun,ZHAO Yong,et al. Analysis of the influence of thermal and mechanical load on combined optical window[J]. Journal of Optical Technology,2022,51(4):943-949. [36] 鲁毅,任万杰,郭国建,等. 基于光-热-结构模拟的罗兰圆型光谱仪热工况优化设计[J]. 应用光学,2023,44(1):37-45.LU Yi,REN Wanjie,GUO Guojian,et al. Optimization design of thermal condition of rowland circle spectrometer based on optical,thermal and structural simulations[J]. Journal of Applied Optics,2023,44(1):37-45. [37] 王勖成. 有限单元法[M]. 北京:清华大学出版社,2003.WANG Xucheng. Finite element method[M]. Beijing:Tsinghua University Press,2003. [38] 周琼. 光路中镜面与气体的热效应及其波前预补偿仿真研究[D]. 长沙:国防科学技术大学,2012.ZHOU Qiong. Simulation study on the thermal effect and wavefornt pre-compensation in the beam path[D]. Changsha:Graduate School of National University of Defense Technology,2012. [39] LIENHARD J H. A heat transfer textbook. Fifth edition[M]. Cambridge,Massachusetts:Phlogiston Press,2020. [40] 张兆顺,崔桂香. 流体力学[M]. 3版. 北京:清华大学出版社,2015.ZHANG Zhaoshun,CUI Guixiang. Fluid mechanics[M]. 3rd edition. Beijing:Tsinghua University Press,2015. [41] 熊浩西,易仕和,丁浩林,等. 三维无规则不均匀折射率场光线追迹新方法[J]. 红外与激光工程,2019,48(5):33-41.XIONG Haoxi,YI Shihe,DING Haolin,et al. New ray tracing method for 3d irregular non-uniform refractive index field[J]. Infrared and Laser Engineering,2019,48(5):33-41. [42] CHANG Xiaofei,WANG Tao,WAN Shizheng,et al. A method based on 3d ray tracing for aero optical wavefront analysis[J]. Optik,2015,126(23):4392-4396. [43] 冯定华,潘沙,田正雨,等. 任意折射率的三维离散空间光线追迹方法研究[J]. 光子学报,2010(3):696-701.FENG Dinghua,PAN Sha,TIAN Zhengyu,et al. Research on ray tracing method in 3d discrete space with discretionary refraction index[J]. Acta Optica Sinica,2010(3):696-701. [44] 吴军,祝玉恒,袁少博,等. 基于光线追迹法的非均匀温度场视觉测量畸变校正[J]. 激光与光电子学进展,2023,60(1):156-161.WU Jun,ZHU Yuheng,YUAN Shaobo,et al. Distortion correction of visual measurement in inhomogeneous temperature field based on ray tracing method[J]. Laser & Optoelectronics Progress,2023,60(1):156-161. [45] 何西旺,杨亮亮,冉仁杰,等. 基于多评价标准的代理模型综合比较研究[J]. 机械工程学报,2022,58(16):403-419.HE Xiwang,YANG Liangliang,RAN Renjie,et al. Comparative studies of surrogate models based on multiple evaluation criteria[J]. Journal of Mechanical Engineering,2022,58(16):403-419. [46] Liu Yin,Wang Shuo,Zhou Qi,et al. Modified multifidelity surrogate model based on radial basis function with adaptive scale factor[J]. Journal of Mechanical Engineering,2022,35(1):77-15. [47] 施胤成,闫怀德,宫鹏,等. 基于Zernike系数优化模型的光学反射镜支撑结构拓扑优化设计方法[J]. 光子学报,2020,49(6):209-220.SHI Yincheng,YAN Huaide,GONG Peng,et al. Topology optimization design method for supporting structures of optical reflective mirrors based on zernike coefficient optimization model[J]. Acta Photonica Sinica,2020,49(6):209-220. [48] ZHANG Qiyuan,WANG Haoyu,WU Peng,et al. Estimating transmitted wavefronts in a broad bandwidth based on zernike coefficients[J]. Journal of Optics,2019,21(9):095601. [49] 杨佳文,黄巧林,韩友民. Zernike多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感,2010,31(5):49-55.YANG Jiawen,HUANG Qiaolin,HAN Youmin. Application and simulation in fitting optical surface with zernike polynomial[J]. Spacecraft Recovery & Remote Sensing,2010,31(5):49-55. |
[1] | 滕达, 刘志勇, 刘立帅, 项延训, 轩福贞. 疲劳裂纹扩展的非线性超声相控阵成像定位检测[J]. 机械工程学报, 2024, 60(24): 25-34. |
[2] | 宋守许, 张宇浩, 蔚辰, 李想, 徐瑞. 热轧工作辊服役状态在线监测与主动再制造时机在线决策方法研究[J]. 机械工程学报, 2024, 60(24): 56-65. |
[3] | 艾诚, 张龙, 郭敏, 黄太文, 刘林. 液态金属冷却法制备镍基单晶高温合金铸件的研究进展[J]. 机械工程学报, 2024, 60(24): 127-141. |
[4] | 吴洋, 王聪, 董国新, 曾日芽, 曹恺, 曹东璞. 考虑滑移的无人履带车自适应路径跟踪控制策略[J]. 机械工程学报, 2024, 60(24): 211-225. |
[5] | 刘亚斌, 谭磊, 韩亚东. 基于分区RANS-LES的混流泵叶顶间隙泄漏涡流动结构及非定常特性研究[J]. 机械工程学报, 2024, 60(24): 309-316,329. |
[6] | 潘宇真, 魏佳炜, KHAN Rezwan Al Islam, 陈雄, 王洪波, 商慧亮. 新型模块化农业机器人设计分析与冗余协同控制[J]. 机械工程学报, 2024, 60(23): 88-101. |
[7] | 梁栋, 张珺鹏, 姚福林, 宋轶民, 孙涛. 高速大承载Schönflies并联机构动力学建模、性能分析及控制策略[J]. 机械工程学报, 2024, 60(23): 114-129. |
[8] | 王展, 陈思阳, 王子男, 张珂. 考虑动态波纹的陶瓷轴承-转子系统非线性振动特性研究[J]. 机械工程学报, 2024, 60(23): 189-204. |
[9] | 凌云飞, 刘志亮, 谢川, 左明健. 物理-经验混合知识模型驱动的感应电机工况辨识方法[J]. 机械工程学报, 2024, 60(23): 320-328. |
[10] | 樊文刚, 吴昌昕, 吴志伟, 李江. 尖轨复杂型面激光测量与三维重构方法研究[J]. 机械工程学报, 2024, 60(23): 329-340. |
[11] | 李淳, 陈雷, 司晓庆, 亓钧雷, 曹健. 陶瓷-金属接头残余应力调控研究综述[J]. 机械工程学报, 2024, 60(22): 21-39. |
[12] | 王颖, 木瑞洁, 牛士玉, 孙孔波, 杨振文. 高熵碳化物陶瓷及其钎焊接头的组织和力学性能[J]. 机械工程学报, 2024, 60(22): 76-85. |
[13] | 申志康, 王波, 杨益, 管月辉, 周平, 侯文涛, 朴钟宇, 刘小超, 黄国强, 杨夏炜, 陈海燕, 田艳红, 李文亚, 李会军. 铝/钢搅拌摩擦钎焊连接机理及疲劳性能研究[J]. 机械工程学报, 2024, 60(22): 130-138. |
[14] | 卢超, 田禾子, 李新宇, 张彪. 基于多目标海鸥算法的分布式焊接节能调度[J]. 机械工程学报, 2024, 60(22): 192-203. |
[15] | 代金垚, 刘献栋, 单颖春, 姜二. 汽车钢制车轮组合焊接的残余应力场研究[J]. 机械工程学报, 2024, 60(22): 291-301. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||