机械工程学报 ›› 2024, Vol. 60 ›› Issue (23): 246-261.doi: 10.3901/JME.2024.23.246
李伟1,2, 胡小龙1, 段辉高1,2, 邓辉3, 黄向明1, 任莹晖1, 艾哈迈德·穆罕默德·马哈茂德·易卜拉欣4
收稿日期:
2023-12-10
修回日期:
2024-07-18
出版日期:
2024-12-05
发布日期:
2025-01-23
作者简介:
李伟(通信作者),男,1983年出生,博士,教授,博士研究生导师。主要研究方向为精密高效加工技术与机床装备研发。E-mail:liwei@hnu.edu.cn;胡小龙,男,1994年出生,博士研究生。主要研究方向为硬脆元件表面等离子体及其复合加工技术。E-mail:huxl@hnu.edu.cn
基金资助:
LI Wei1,2, HU Xiaolong1, DUAN Huigao1,2, DENG Hui3, HUANG Xiangming1, REN Yinghui1, Ahmed Mohamed Mahmoud Ibrahim4
Received:
2023-12-10
Revised:
2024-07-18
Online:
2024-12-05
Published:
2025-01-23
摘要: 在芯片、光刻机、激光核聚变装置等国家重点工程驱动下,高精高质硬脆元件需求日益迫切,但是现有半导体晶圆、光学元件等硬脆元件表面加工技术还存在诸多局限,远不能满足实际需求。低温等离子体加工技术具有无机械接触和灵活性强等优势,可以实现硬脆材料元件表面的高效率近无损伤加工,但在加工均匀性、面型精度等方面仍面临着严峻挑战。因此非常有必要深入分析等离子体加工机理、工艺及装备方面的研究现状、存在的问题及发展趋势,为硬脆元件表面的高精高质加工提供技术参考和借鉴。分析了等离子体原子尺度下的加工机理,总结了硬脆元件等离子体加工技术及装备方面的研究现状;在此基础上,探讨了等离子体及其加工装备存在的问题,由此指出等离子体加工技术的发展方向,以期促进等离子体技术在硬脆元件加工方面的推广应用,助力我国半导体晶圆、光学元件等硬脆元件超精密加工制造水平的提升,支持国家重点工程的发展。
中图分类号:
李伟, 胡小龙, 段辉高, 邓辉, 黄向明, 任莹晖, 艾哈迈德·穆罕默德·马哈茂德·易卜拉欣. 硬脆元件表面低温等离子体及其复合加工技术研究现状分析[J]. 机械工程学报, 2024, 60(23): 246-261.
LI Wei, HU Xiaolong, DUAN Huigao, DENG Hui, HUANG Xiangming, REN Yinghui, Ahmed Mohamed Mahmoud Ibrahim. Research Status Analysis of Low Temperature Plasma and Its Compound Processing Technology on the Surface of Hard and Brittle Components[J]. Journal of Mechanical Engineering, 2024, 60(23): 246-261.
[1] 李琛,张飞虎,张宣,等. 硬脆单晶材料塑性域去除机理研究进展[J]. 机械工程学报,2019,55(3):181-190. LI Chen,ZHANG Feihu,ZHANG Xuan,et al. Progress in the study of plastic domain removal mechanism of hard and brittle single-crystal materials[J]. Journal of Mechanical Engineering,2019,55(3):181-190. [2] YAMAMURA K,EMORI K,SUN R,et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals,2018,67(1):353-356. [3] 冯平法,王健健,张建富,等. 硬脆材料旋转超声加工技术的研究现状及展望[J]. 机械工程学报,2017,53(19):3-21. FENG Pingfa,WANG Jianjian,ZHANG Jianfu,et al. Research status and prospect of rotary ultrasonic machining technology for hard and brittle materials[J]. Journal of Mechanical Engineering,2017,53(19):3-21. [4] 高尚,李洪钢,康仁科,等. 新一代半导体材料氧化镓单晶的制备方法及其超精密加工技术研究进展[J]. 机械工程学报,2021,57(9):213-232. GAO Shang,LI Honggang,KANG Renke,et al. Progress in the preparation of new-generation semiconductor material gallium oxide single crystal and its ultra- precision processing technology[J]. Journal of Mechanical Engineering,2021,57(9):213-232. [5] 于天彪,刘传蒙,于奎东,等. 激光热辅助磨削石英玻璃的实验研究[J].东北大学学报,2019,40(10):1468-1471. YU Tianbiao,LIU Chuanmeng,YU Kuidong,et al. Experimental study on laser thermal-assisted grinding of quartz glass[J]. Journal of Northeastern University. 2019,40(10):1468-1471. [6] 仇中军,周立波,房丰洲,等. 石英玻璃的化学机械磨削加工[J]. 光学精密工程,2010,18(7):1554-1561. QIU Zhongjun,ZHOU Libo,FANG Fengzhou,et al. Chemical-mechanical grinding of quartz glass[J]. Optical Precision Engineering,2010,18(7):1554-1561. [7] 曹建国,张勤俭. 碳化硅陶瓷超声振动辅助磨削材料去除特性研究[J]. 机械工程学报,2019,55(13):209-211. CAO JianGuo,ZHANG QinJian. Study on material removal characteristics of ultrasonic vibration-assisted grinding of silicon carbide ceramics[J]. Journal of Mechanical Engineering,2019,55(13):209-211. [8] GUO Y,YIN S,OHMORI H,et al. A novel high efficiency magnetorheological polishing process excited by Halbach array magnetic field[J]. Precision Engineering,2022,74:175-185. [9] 饶小双,张飞虎,刘立飞,等.电火花机械复合磨削反应烧结SiC陶瓷的表面特征[J]. 光学精密工程,2016,24(9):2192-2195. RAO Xiaoshuang,ZHANG Feihu,LIU Lifei,et al. Surface characteristics of sintered SiC ceramics in response to EDM mechanical composite grinding[J]. Optical Precision Engineering,2016,24(9):2192-2195. [10] WANG B,ZHAO Q L,WANG L P,et al. Application of atmospheric pressure plasma in the ultrasmooth polishing of SiC optics[J]. Materials Science Forum,2006,532-533:504-507. [11] SHI B,DAI Y,XIE X,et al. An experimental study on arcing in arc-enhanced plasma machining technology for etching of silicon carbide ceramics[J]. International Journal Of Advanced Manufacturing Technology,2017,89:3517–3525. [12] FANARA C,SHORE P,NICHOLLS J R,et al. A new reactive atom plasma technology (RAPT) for precision machining:The etching of ULE® surfaces[J]. Adv. Eng. Mater.,2006,8:933-939. [13] ARNOLD T,BOHM G. Application of atmospheric plasma jet machining (PJM) for effective surface figuring of SiC[J]. Precision Engineering,2012,36:546-553. [14] MORI Y,YAMAMURA K,YAMAUCHI K,et al. Plasma CVM (chemical vaporization machining):An ultra precision machining technique using high pressure reactive plasma[J]. Nanotechnology,1993,4:225-229. [15] LI S,WANG L J,LI G Z,et al. Small hole drilling of Ti-6Al-4V using ultrasonic-assisted plasma electric oxidation grinding[J]. Precision Engineering,2021,67:189-198. [16] DONNELLY V M,KORNBLIT A. Plasma etching:Yesterday,today,and tomorrow[J]. Journal of Vacuum Science & Technology A,2013,31(5):1-10. [17] OMAR H S,EL-SAYED K M,SOLIMAN A H M,et al. Characterization techniques of plasma surface modification treated polypropylene:A review[J]. Advances in Polymer Technology,2019,1-25. [18] YADAV H N S,KUMAR M,KUMAR A,et al. Plasma polishing processes applied on optical materials:A review[J]. Journal of Micromanufacturing,2023,6(1):27-39. [19] QIN C,TIAN S,JIANG Z J,et al. Low temperature plasma-assisted synthesis and modification of water splitting electrocatalysts[J]. Electrochimica Acta,2023,449:142179. [20] CHEN Y Q,ZHANG L C. Polishing of diamond materials:Mechanisms,modeling and implementation[M]. New York:Springer. 2013,1:25-30. [21] LUO H,AIMAL K M,LIU W,et al. Polishing and planarization of single crystal diamonds:State-of-the-art and perspectives[J]. International Journal of Extreme Manufacturing,2021,3(2):022003. [22] XU S,ZHENG W,YUAN X,et al. Recovery of fused silica surface damage resistance by ion beam etching[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2008,266(15):3370-3374. [23] ECOMOMOU D J. Pulsed plasma etching for semiconductor manufacturing[J]. Journal of Physics D-Applied Physics,2014,47:303-301. [24] YAMAMURA K,EMORI K,SUN R,et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals.2018(67):353-356. [25] JOURDIAN R,CASTELLI M,MORANTZ P,et al. Plasma surface figuring of large optical components[J]. Proceedings of SPIE the International Society for Optical Engineering,2012,8430:8433. [26] YU N,JOURDAIN R,GOURMA M,et al. Analysis of De-Laval nozzle designs employed for plasma figuring of surfaces[J]. International Journal of Advanced Manufacturing Technology,2016,87(1-4):1-11. [27] ZHANG Y,ZHANG L,CHEN K,et al. Rapid subsurface damage detection of SiC using inductivity coupled plasma[J]. International Journal of Extreme Manufacturing,2021,3(3):035202. [28] FANG Z D,ZHANG Y,LI R L,et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom selective etching[J]. International Journal of Machine Tools and Manufacture,2020,159:103649. [29] LIN J Q. A Novel digital etch technique for deeply scaled III-V MOSFETs[J]. IEEE Electron Device Letters,2014,35(4):440-442. [30] TOROS A,KISS M K,GRAZIOSI T,et al. Reactive ion etching of single crystal diamond by inductively coupled plasma:State of the art and catalog of recipes[J]. Diamond and Related Materials,2020(1):107839. [31] KRUGER F,LEE H,NAM S K,et al. Voltage waveform tailoring for high aspect ratio plasma etching of SiO2 using Ar/CF4/O2 mixtures:Consequences of ion and electron distributions on etch profiles[J]. Journal of Vacuum Science & Technology A,2023,41(1):033508. [32] FANG F Z. Atomic and close-to-atomic scale manufacturing:Perspectives and measures[J]. International Journal of Extreme Manufacturing,2020,2:030201. [33] LIANG S,ZHANG L,DENG H. Theoretical and experimental study on plasma-induced atom-migration manufacturing (PAMM) of glass[J]. Applied Surface Science,2022,599:153976. [34] 温海浪,肖平,陆静. 大尺寸单晶金刚石衬底抛光技术研究现状与展望[J]. 机械工程学报,2021,57(22):157-171. WEN Haiwai,XIAO Ping,LU Jing. Current status and outlook of polishing technology for large-size single-crystal diamond substrates[J]. Journal of Mechanical Engineering,2021,57(22):157-171. [35] FANG Z D,ZHANG Y,LI R L,et al. An efficient approach for atomic-scale polishing of single-crystal silicon via plasma-based atom-selective etching[J]. International Journal of Machine Tools and Manufacture. 2020(1):1-10. [36] GASVODA R J,ZHANFG Z,WANG S,et al. Etch selectivity during plasma-assisted etching of SiO2 and SiN x:Transitioning from reactive ion etching to atomic layer etching[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2020,38(5):050803. [37] YAMAMURA K,EMORI K,SUN R,et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals,2018(67):353-6. [38] TOKUDA N,TAKEUCHI D,RI S G,et al. Flattening of oxidized diamond (111) surfaces with H2SO4/H2O2 solutions[J]. Diamond And Related Materials,2019(18):213-5 [39] JALOUSTRE L,ACKERMANN V,DEMELLO S S,et al. Preferential crystal orientation etching of GaN nanopillars in Cl2 plasma[J]. Materials Science in Semiconductor Processing. 2023,165:107654. [40] NAGAI M,NAKANISHI K,TAKAHASHI H,et al. Anisotropic diamond etching through thermochemical reaction between Ni and diamond in high-temperature water vapour[J]. Scientific Reports,2018,8(1):6687. [41] NEMES-INCZE P,MAGDA G,KAMARAS K,et al. Crystallographically selective nanopatterning of graphene on SiO2[J]. Nano Research,2010,3:110-116. [42] YANG R,ZHANG L C,WANG Y,et al. An anisotropic etching effect in the graphene basal plane[J]. Advanced Materials. 2010,1:1-6. [43] LYU P,LAI M,FANG F Z. Nanometric polishing of lutetium oxide by plasma-assisted etching[J]. Advances in Manufacturing,2020,8(4):440-446. [44] WANG D,LIU W,WU Y,et al. Material removal function of the capacitive coupled hollow cathode plasma source for plasma polishing[J]. Physics Procedia,2011,19:408-411. [45] LIANG S,HE Y,DING P,et al. Smoothing of fused silica with less damage by a hybrid plasma process combining isotropic etching and atom-migration[J]. Surfaces and Interfaces,2023,41:103191. [46] JIN H L,WANG B,ZHANG F H. Effect on surface roughness of zerodur material in atmospheric pressure plasma jet processing[J]. Advanced Optical Technologies,2010,7655(338):423-429. [47] YAO Y,WANG B,WANG J,et al. Chemical machining of Zerodur material with atmospheric pressure plasma jet[J]. CIRP Annals,2010,59(1):337-340. [48] TAKINO H,YAMAMURA K,SAMO Y,et al. Shape correction of optical surfaces using plasma chemical vaporization machining with a hemispherical tip electrode[J]. Applied Optics,2012,51(3):401-407. [49] NAKAHAMA Y,KANETSUKI N,FUAKI T,M,et al. Etching characteristics of GaN by plasma chemical vaporization machining[J]. Surf. Interface Anal.,2008,40:1566-1570. [50] LIANG S,ZHANG L,DENG H. Theoretical and experimental study on plasma-induced atom-migration manufacturing (PAMM) of glass[J]. Appl. Surf. Sci.,2022;599:153976. [51] KUBOTA A,NAGAE S,TOUGE M. Improvement of material removal rate of single-crystal diamond by polishing using H2O2 solution[J]. Diamond and Related Materials,2016,70:39-45. [52] YAMAMURA K,EMORI K,SUN R,Y,et al. Damage free highly efficient polishing of single-crystal diamond wafer by plasma assisted polishing[J]. CIRP Annals,2018,67:353-356. [53] KIM H J,LEE H J. Numerical analysis of the effect of electrode spacing on deposition rate profiles in a capacitively coupled plasma reactor[J]. Plasma Sources Science and Technology,2016,25(6):065006. [54] ARNOLD T,BOEHM G,EICHENTOPF I-M,et al. Plasma jet machining a novel technology for precision machining of optical elements[J]. Vakuum in Forschung und Praxis,2010,22(4):10-16. [55] IVANOV D V,ZVEREV S G. Mathematical simulation of plasma processes in a radio frequency inductively coupled plasma torch in ANSYS fluent and COMSOL Multiphysics software packages[J]. IEEE Transactions on Plasma Science,2022,50(6):1700-1709. [56] DAYALADEV D,KRISHNAA E,MANAS D. Development of a non-contact plasma processing technique to mitigate chemical network defects of fused silica with life enhancement of He-Ne laser device[J]. Optics and Laser Technology,2019,113:289-302. [57] 王骏. ICP快速抛光系统的搭建和保形工艺研究[D]. 哈尔滨:哈尔滨工业大学,2015. WANG Jun. Research on the construction of ICP rapid polishing system and conformal process[D]. Harbin:Harbin Institute of Technology,2015. [58] TOROS A,KISS M K,GRAZIOSI T,et al. Reactive ion etching of single crystal diamond by inductively coupled plasma:State of the art and catalog of recipes[J]. Diamond and Related Materials,2020(1):107839. [59] JIN Y,JI P,WANG B,et al. Velocity-region dual adaptive path planning for ICP jet processing of ultra-thin optical elements[C]//Seventh Asia Pacific Conference on Optics Manufacture and 2021 International Forum of Young Scientists on Advanced Optical Manufacturing. 2022,12166:1144-1148. [60] SHI B L,DAI Y F,XIE X H. Arc-enhanced plasma machining technology for high efficiency machining of silicon carbide[J]. Plasma Chemistry And Plasma Processing,2016,36:891-900. [61] WU Y,LIU W,HANG L. Research on RF-generated plasma polishing[J]. Physics Procedia,2012,32:590-597. [62] 卢希钊,陈嘉林,温秋玲,等. 短脉冲红外激光诱导等离子体微刻蚀单晶高温高压金刚石[J]. 光子学报,2021,50(6):137-145. LU Xizhao,CHEN Jialin,WEN Qiuling,et al. Short-pulse infrared laser-induced plasma microetching of single- crystal high-temperature,high-pressure diamond[J]. Journal of Photonics,2021,50(6):137-145. [63] YAMAMURA K,EMORI K,SUN R,et al. Damage-free highly efficient polishing of single-crystal diamond wafer by plasma-assisted polishing[J]. CIRP Annals,2018,67:353-356. [64] SUBRAHMANYAN P K,GARADOPEE G. Reactive atom plasma (RAP) processing of mirrors for astronomy[C]// Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation. SPIE,2008,7018:73-84. [65] ARNOLD H T,BOEHM G,PAETZELT H,et al. Precision asphere and freeform optics manufacturing using plasma jet machining technology[J]. Proceedings of the SPIE,2017,10448:1044. [66] PAETZELT H,BOHM G,ARNOLD T. Etching of silicon surfaces using atmospheric plasma jets[J]. Plasma Sources Science and Technology,2015,24(2):025002. [67] ERIGUCHI K,ONO K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices[J]. Journal Of Physics D-applied Physics,2008,41:024002. [68] KANARIK K J,TAN S,HOLLAND J,et al. Moving atomic layer etch from lab to fab solid state technol[J]. The journal of Physical Chemistry Letters,2013,1:14-17. [69] ZHANG J,LI Z,SHAO J,et al. Improved etching uniformity using equivalent electrodes on an unconventional,irregular membrane optical element for large aperture diffractive optical telescopes[J]. Optics Express,2020,28(22):33739-33746. [70] LIU J,LI Y,CHEN Y,et al. A review of low-temperature plasma-assisted machining:From mechanism to application[J]. Frontiers of Mechanical Engineering,2023,18(1):18. [71] LI Y,BAI Q,YAO C,et al. Long-lasting antifogging mechanism for large-aperture optical surface in low- pressure air plasma in-situ treated[J]. Applied Surface Science,2022,581:152358. [72] BASTAWROS A F,CHANDRA A,POOSARLA P A. Atmospheric pressure plasma enabled polishing of single crystal sapphire[J]. CIRP Annals-Manufacturing Technology,2015,64(1):515-518. [73] LIU N,SUGIMOTO K,YOSHITAKA N,et al. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing[J]. Diamond and Related Materials,2022,124:108899. [74] 吉建伟,山村和也,邓辉. 面向单晶SiC原子级表面制造的等离子体辅助抛光技术[J]. 物理学报,2021,70(6):1-10. JI Jianwei,YAMAMURA Kazuya,DENG Hui. Plasma-assisted polishing technology for atomic-level surface fabrication of single-crystal SiC[J]. Journal of Physics,2021,70(6):1-10. [75] MA G L,LI S J,LIU X,et al. Combination of plasma electrolytic processing and mechanical polishing for single-crystal 4H-SiC[J]. Micromachines,2021,12(606):1-11. [76] PAN J,WU Y,ZHUO Z,et al. Experimental study of single-crystal GaN wafer electro-Fenton magnetorheological complex friction wear[J]. Tribology International,2023,180:108260. [77] HIRAIWA A,SAITO T,MATSUMURA D,et al. Isotope analysis of diamond-surface passivation effect of high- temperature H2O-grown atomic layer deposition-Al2O3 films[J]. Journal of Applied Physics,2015,117(21):1-2. [78] RACKA-SZMIDT K,STONIO B,ŻELAZKO J,et al. A review:Inductively coupled plasma reactive ion etching of silicon carbide[J]. Materials,2021,15(1):123. [79] LIU N,SUGIMOYO K,YOSHITAKA N,et al. Effects of polishing pressure and sliding speed on the material removal mechanism of single crystal diamond in plasma-assisted polishing[J]. Diamond and Related Materials,2022,124:108899. [80] YAMAMURA K,TAKIUCHI T,UEDA M,et al. Plasma-assisted polishing of single crystal SiC for obtaining tomically flat strain-free surface. CIRP Annals-Manufacturing Technology,2011,60(1):571-574. [81] DENG H,MONNA K,TABATA T,et al. Optimization of the plasma oxidation and abrasive polishing processes in plasma-assisted polishing for highly effective planarization of 4H-SiC[J]. CIRP Annals-Manufacturing Technology,2014,63(1):529-532. [82] DENG H,YAMAMURA K. Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma-assisted polishing[J]. CIRP Annals-Manufacturing Technology,2013,62(1):575-578. [83] LYU P,LAI M,LIU Z,et al. Damage-free finishing of Lu2O3 by combining plasma-assisted etching and low-pressure polishing[J]. CIRP Annals-Manufacturing Technology,2022,71(1):169-172. [84] YAMAMURA K,TAKIGUCHI T,ZETTSU N. Development of atmospheric-pressure-plasma-assisted high- efficient and high-integrity machining process of difficult- to-machine materials[C]//European Society for Precision Engineering and Nanotechnology. 2010:299-302. [85] SUN R Y,XU Y,KENTA A,et al. High-quality plasma- assisted polishing of aluminum nitride ceramic[J]. CIRP Annals-Manufacturing Technology,2020,69(1):301-304. [86] 李伟,胡小龙,任莹晖,等. 一种延性域加工尺度可控的超精密磨削方法,中国:ZL 202210224188.2[P]. 2022-06-07. LI Wei,HU Xiaolong,REN Yinghui,et al. An ultra- precision grinding method with controllable machining scale in ductile domain,China:ZL 202210224188.2[P]. 2022-06-07. [87] CHEN Z,ZHAN S,ZHAO Y. Electrochemical jet-assisted precision grinding of single-crystal SiC using soft abrasive wheel[J]. International Journal of Mechanical Sciences,2021,195:106239. [88] LIU N,YAMADA H,YOSHINAKA N,et al. Comparison of surface and subsurface damage of mosaic single-crystal diamond substrate processed by mechanical and plasma-assisted polishing[J]. Diamond and Related Materials,2021,119:108555. [89] ARNOLD T,BOEHM G,EICHENTOPF I M,et al. Plasma jet machining a novel technology for precision machining of optical elements[J]. Vakuum in Forschung und Praxis,2010,22(4):10-16. [90] SEHHAT M H,CHANDLER J,YATES Z. A review on ICP powder plasma spheroidization process parameters[J]. International Journal of Refractory Metals and Hard Materials,2022,103:105764. [91] ZHANG L,ZHANG Y,WU B,et al. A study of thermal etching of GaN by atmospheric argon inductively coupled plasma[J]. Thermochimica Acta,2023,724:179491. [92] YAMAMURA K,SHIMADA S,MORI Y. Damage-free improvement of thickness uniformity of quartz crystal wafer by plasma chemical vaporization machining[J]. CIRP Annals-Manufacturing Technology,2008,57(1):567-570. [93] LI N,XIN Q,ZHANG P,et al. Atmospheric pressure plasma processing of fused silica in different discharge modes[J]. Plasma Science and Technology,2015,17(7):567-573. [94] 张景文. 大口径衍射光学元件反应离子刻蚀均匀性及调控方法的研究[D]. 西安:电子科技大学,2021. ZHANG Jingwen. Research on uniformity and control methods for reactive ion etching of large-aperture diffractive optical elements[D]. Xi’an:University of Electronic Science and Technology of China,2021. [95] ZHAGN L,WU B,ZHANG Y,et al. Highly efficient and atomic scale polishing of GaN via plasma-based atom-selective etching[J]. Applied Surface Science,2023,620:156786. [96] JOURDAIN R,CASTELLI M,SHORE P,et al. Reactive atom plasma (RAP) figuring machine for meter class optical surfaces[J]. Production Engineering,2013,7(6):665-673. [97] NISHIZAWA H,OYAMA K,TOSHIRO K,et al. Study on innovative plasma fusion CMP and its application to processing of diamond substrate[J]. International Conference on Planarization/CMP Technology (ICPT),2015:1-4. [98] LYU P,LAI M,LIU Z,et al. Atomic and close-to-atomic scale polishing of Lu2O3 by plasma-assisted etching[J]. International Journal of Mechanical Sciences,2023,252:108374. [99] LI W,HU X L,REN Y H,et al. Ultra-precision lapping of H2O(g) plasma-treated CaF2 by porous diamond grits[J]. Ceramics International,2024. [100] 邹田春,刘志浩,李晔,等. 等离子体表面处理对碳纤维增强树脂基复合材料(CFRP)胶接性能及表面特性的影响[J]. 中国表面工程,2022,35(1):125-134. ZOU Tianchun,LIU Zhihao,LI Ye,et al. Effect of plasma surface treatment on bonding properties and surface properties of CFRP[J]. China Surface Engineering,2022,35(1):125-134. [101] 万俊豪,但敏,黄佳俊,等. 等离子体处理对CFRP筒状件内壁活化效果的影响[J]. 中国表面工程,2023,36(6):178-185. WAN Junhao,DAN Min,HUANG Jiajun,et al. Plasma Treatment on the activation effect of the inner wall of CFRP cylindrical parts[J]. China Surface Engineering,2023,36(6):178-185. [102] 李昱鹏,孟祥任,刘玉霞,等. 射频等离子体改性PTFE表面液滴撞击接触起电对润湿性的影响[J]. 中国表面工程,2023,36(6):145-154. LI Yupeng,MENG Xiangren,LIU Yuxia,et al. Effect of contact electrification during water droplet impact on the wettability of PTFE surfaces modified by radio frequency plasma[J]. China Surface Engineering,2023,36(6):145-154. |
[1] | 武韩强, 陈卓, 叶曦珉, 张诗博, 李偲偲, 曾江, 汪强, 吴勇波. 钛合金超声辅助等离子体氧化改性磨削基本加工特性研究[J]. 机械工程学报, 2024, 60(9): 13-25. |
[2] | 王帅帅, 段振景, 刘吉宇, 李育恒, 王梓恒, 周瑜阳, 刘新, 宋金龙, 孙晶. 冷等离子体耦合微量润滑微铣削CFRP加工性能与机理研究[J]. 机械工程学报, 2024, 60(9): 338-350. |
[3] | 董晓星, 诸铁宇, 鲁聪达, 金明生. 基于球柱状电流变工具的工件表面形貌演化机理研究[J]. 机械工程学报, 2024, 60(9): 364-373. |
[4] | 张春波, 吴成军, 袁浩天. 等离子体作用下不同脉冲数超快激光烧蚀过程中化学反应机制的数值模拟[J]. 机械工程学报, 2024, 60(8): 94-106. |
[5] | 郭江, 潘博, 连佳乐, 杨哲, 刘欢, 高菲, 康仁科. 双面研磨技术研究现状与发展趋势[J]. 机械工程学报, 2024, 60(7): 266-288. |
[6] | 喻明浩, 白锦旗, 王伟, 胡宇喆, 刘一凡. 双谐振结构同轴微波等离子体炬调谐特性分析[J]. 机械工程学报, 2024, 60(5): 169-182. |
[7] | 华东鹏, 周青, 王婉, 李硕, 王志军, 王海丰. 碳化硅纳米抛光亚表面损伤机理的分子动力学模拟[J]. 机械工程学报, 2024, 60(5): 231-240. |
[8] | 田业冰, 马振, 钱乘, AHMAD S, 马锡峰, 苑祥昱, 范增华. 磁性剪切增稠抛光材料去除特性与预测模型[J]. 机械工程学报, 2024, 60(23): 365-376. |
[9] | 郭广强, 李瑞安, 张人会, 陈学炳, 王静宜. 不同工况下液环泵轴向叶顶间隙泄漏流的等离子体激励调控研究[J]. 机械工程学报, 2024, 60(22): 447-456. |
[10] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[11] | 王金栋, 吴展扬, 谢宇鸿. 基于牛牙几何特征的仿生研磨副结构协同设计[J]. 机械工程学报, 2024, 60(19): 212-224. |
[12] | 郭美玲, 杨雷, 李鹏阳, 许振涛, 许超愿, 王权岱, 李言. 氟等离子体对石墨烯纳晶碳膜的刻蚀加工及摩擦学性能调控[J]. 机械工程学报, 2024, 60(15): 216-226. |
[13] | 郭江, 张鹏飞, 杨哲, 赵勇, 李琳光, 景召, 张蒙, 庞桂兵. 匀光阵列微结构模具高性能非接触仿形抛光[J]. 机械工程学报, 2024, 60(1): 127-136. |
[14] | 陈磊, 刘阳钦, 唐川, 蒋翼隆, 石鹏飞, 钱林茂. 面向超精密加工的微观材料去除机理研究进展[J]. 机械工程学报, 2023, 59(23): 229-264. |
[15] | 郭江, 杨哲, 张鹏飞, 李琳光, 俞学雯, 潘博. FeCrAl合金化学机械抛光粗糙度预测模型研究[J]. 机械工程学报, 2023, 59(23): 310-319. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||