• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (22): 311-328.doi: 10.3901/JME.2024.22.311

• 运载工程 • 上一篇    下一篇

扫码分享

铁道车辆转向架振动疲劳载荷定义方法探讨

张振先1,2, 吴兴文3, 吴圣川1, 刘开成1, 刘阳1, 池茂儒1, 温泽峰1, 梁树林1, 金学松1   

  1. 1. 西南交通大学轨道交通运载系统国家重点实验室 成都 610031;
    2. 中车青岛四方机车车辆股份有限公司 青岛 266111;
    3. 西南交通大学机械工程学院 成都 610031
  • 收稿日期:2024-01-05 修回日期:2024-07-11 出版日期:2024-11-20 发布日期:2025-01-02
  • 作者简介:张振先,男,1982年出生,正高级工程师。主要研究方向为振动疲劳,车辆系统动力学。E-mail:zhangzhenxian@cqsf.com;吴兴文(通信作者),男,1988年出生,博士,副教授,硕士研究生导师。主要研究方向为振动疲劳,车辆系统动力学。E-mail:xingwen_wu@163.com
  • 基金资助:
    四川省自然科学基金(2024NSFSC0187)、中国科协青年人才托举工程(2019Q NRC001)和中国国家铁路集团有限公司科技研究开发计划(N2022J009)资助项目。

Investigation on Load Definition of Vibration Fatigue of Railway Vehicle Bogie

ZHANG Zhenxian1,2, WU Xingwen3, WU Shengchuan1, LIU Kaicheng1, LIU Yang1, CHI Maoru1, WEN Zefeng1, LIANG Shulin1, JIN Xuesong1   

  1. 1. State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031;
    2. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111;
    3. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031
  • Received:2024-01-05 Revised:2024-07-11 Online:2024-11-20 Published:2025-01-02
  • About author:10.3901/JME.2024.22.311

摘要: 载荷是铁道车辆转向架抗疲劳设计的基本输入,梳理现有标准载荷定义方法和阐明标准载荷与实际服役载荷的差异,对铁道车辆转向架抗疲劳设计具有重要意义。基于此,梳理铁道车辆转向架部件振动疲劳失效的普遍特点、主要诱因及解决方案;从动力学角度阐释转向架构架主体载荷的定义方法,提出实测载荷谱向标准三阶段载荷系数的转化方法,探讨浮沉和侧滚载荷系数的安全裕量;针对转向架附属部件振动谱,探明标准轴箱振动谱与实测振动谱的差异性。结果表明:转向架失效的部件主要以附属部件为主,轮轨高频振动导致的结构共振是转向架部件振动疲劳失效的主要诱因。标准定义的车辆浮沉系数相比实际服役条件具有较高的安全裕量,侧滚载荷系数受车辆稳定性影响较大;现有标准转向架轴箱振动谱低估了高频范围的振动能量,提出了考虑轮轨多特征频带的轴箱振动平直谱定义方法。针对转向架振动疲劳载荷定义的相关讨论,为铁道车辆转向架振动疲劳正向设计提供理论参考。

关键词: 铁道车辆, 转向架, 振动疲劳, 疲劳载荷系数, 轴箱振动谱

Abstract: The load is the fundamental input for the fatigue-resistant design of railway vehicle bogies. Understanding the definition method of standard loads and elaborating the differences between standard loads and service loads is of great significant importance for the fatigue-resistant design of railway vehicle bogies. The main characteristics and causal factors of vibration fatigue of bogie system, as well as the countermeasures, are primarily reviewed. The load definition methods of standard loads are explained from the vehicle system dynamics point of view, and a method is developed to convert the random loading spectrum to three-levels loading spectrum, which further facilitate to study the applicability and safety margin of bounce and roll factors for China high-speed railway. Regarding to the vibration spectrum of bogie components, the difference between the standard and measured vibration spectrum is discussed. The results show that the most failure cases occurred at the sub-components of railway bogie, the structural resonance caused by high frequency wheel-rail vibration serves as the main cause of vibration fatigue failure of bogie components. Compared with the actual service conditions, the bounce coefficient of vehicle given in standard has a higher safety margin, and the rolling coefficient is significantly affected by the vehicle stability. The vibration spectrum of axle box defined in the standard underestimates the vibration level in the high frequency range. Therefore, according to the characteristics of wheel-rail coupling vibration, the characteristic frequency band of axle box is defined, and a flat vibration spectrum of axle box considering multi-characteristic frequency band of wheel/rail is proposed. The discussions of loading definition for bogie system given could serve as an important reference for the vibration fatigue design of railway vehicles.

Key words: rail vehicle, bogie system, vibration fatigue, loading coefficient of fatigue, vibration spectrum of axle box

中图分类号: