[1] 《物流技术与应用》编辑部.疫情冲击下的淬炼与成长-2020年中国物流装备市场回顾与2021年展望(上)[J].物流技术与应用, 2021, 26(3):54. Editorial Department of Logistics & Material Handling. Review of China's logistics equipment market in 2020 and prospect in 2021[J]. Logistics & Material Handling, 2021, 26(3):54. [2] BALDASSINO N, BERNUZZI C. Analysis and behaviour of steel storage pallet racks[J]. Thin-Walled Structures, 2000, 37(4):277-304. [3] GILBERT B P, RASMUSSEN K J R, BALDASSINO N, et al. Determining the transverse shear stiffness of steel storage rack upright frames[J]. Journal of Constructional Steel Research, 2012, 78(10):107-116. [4] TALEBIAN N, GILBERT B P, BALDASSINO N, et al. Factors contributing to the transverse shear stiffness of bolted cold-formed steel storage rack upright frames with channel bracing members[J]. Thin-Walled Structures, 2019, 136(3):50-63. [5] SAJJA S R, BEALE R G, GODLEY M H R. Cross-aisle stiffness tests on rack upright frames[C]//University of Missouri-Rolla. Twentieth International Specialty Conference on Cold-Formed Steel Structures, November 3 & 4, 2010, University of Missouri-Rolla, St. Louis, Missouri. St. Louis:University of Missouri-Rolla, 2010:367-381. [6] SAJJA S R, BEALE R G, GODLEY M H R. Shear stiffness of pallet rack upright frames[J]. Journal of Constructional Steel Research, 2008, 64(7):867-874. [7] Rack Manufacturers Institute. ANSI-RMI MH16.1 specification for the design, testing and utilization of industrial steel storage racks[S]. Charlotte:Rack Manufacturers Institute, 2021. [8] TALEBIAN N, GILBERT B P, BALDASSINO N, et al. Finite element modeling of bolted cold-formed steel storage rack upright frames[J]. Applied Mechanics and Materials, 2016, 4097(5):251-257. [9] ROURE F, PEKÖZ T, SOMALO M R, et al. Cross-aisle stiffness analysis of industrial welded cold-formed steel rack upright frames[J]. Thin-Walled Structures, 2019, 141(8):332-344. [10] 徐格宁, 杨瑞刚.约界参数CAP对大型钢结构系统可靠性分析的影响[J].机械工程学报, 2005, 53(12):130-134. XU Gening, YANG Ruigang. Influence of bounded parameter CAP on reliability analysis of large steel structure system[J]. Journal of Mechanical Engineering, 2005(12):130-134. [11] 蒋琛, 邱浩波, 高亮.随机不确定性下的可靠性设计优化研究进展[J].中国机械工程, 2020, 31(2):190-205. JIANG Chen, QIU Haobo, GAO Liang. Research progresses in reliability-based design optimization under aleatory uncertainties[J]. China Mechanical Engineering, 2020, 31(2):190-205. [12] 张朝龙, 赵筛筛, 何怡刚.基于信息熵与PSO-LSTM的锂电池组健康状态估计方法[J].机械工程学报, 2022, 58(10):180-190. ZHANG Chaolong, ZHAO Shaishai, HE Yigang. State-of-health estimate for lithium-ion battery using information entropy and PSO-LSTM[J]. Journal of Mechanical Engineering, 2022, 58(10):180-190. [13] QU D, CAI X, CHANG W. Evaluating the effects of steel fibers on mechanical properties of ultra-high performance concrete using artificial neural networks[J]. Applied Sciences, 2018, 8(7):1120-1140. [14] 宋一铭, 吕志军, 陈东, 等.非连续截面薄壁钢构件稳定性智能预测方法[J].机械强度, 2018, 40(3):653-659. SONG Yiming, LÜ Zhijun, CHEN Dong, et al. Intelligent prediction method on stability of thin-wall steel component with non continuous cross section[J]. Journal of Mechanical Strength, 2018, 40(3):653-659. [15] SHAH S N R, SULONG N H R, EL-SHAFIE A. New approach for developing soft computational prediction models for moment and rotation of boltless steel connections[J]. Thin-Walled Structures, 2018, 135(13):206-215. [16] LYU Z, ZHAO P, LU Q, et al. Prediction of the bending strength of boltless steel connections in storage pallet racks:An integrated experimental-FEM-SVM methodology[J]. Advances in Civil Engineering, 2020, 1:1-17. [17] 郑怀亮, 王日新, 杨远涛, 等.数据驱动故障诊断方法泛化性能的经验性分析[J].机械工程学报, 2020, 56(9):102-117. ZHENG Huailiang, WANG Rixin, YANG Yuantao, et al. An empirical analysis about the generalization performance of data-driven fault diagnosis methods[J]. Journal of Mechanical Engineering, 2020, 56(9):102-117. [18] SUN H, BURTON H V, HUANG H. Machine learning applications for building structural design and performance assessment:State-of-the-art review[J]. Journal of Building Engineering, 2021, 33:101816. [19] 丁浩.基于XGBoost多模型融合强化技术的个人信用评估研究[D].南京:南京信息工程大学, 2019. DING Hao. Research on person credit evaluation based on enhanced technology of XGBoost multi-model fusion[D]. Nanjing:Nanjing University of Information Science and Technology, 2019. [20] 刘诚然.基于深度学习的远场语音识别技术研究[D].郑州:战略支援部队信息工程大学, 2019. LIU Chengran. Research on deep learning based far-filed speech recognition[D]. Zhengzhou:Information Engineering University, 2019. [21] European Committee for Standardization. EN15512 Steel static storage systems[S]. Brussels:European Committee for Standardization, 2009. [22] Standards Association of Australia. AS/NZS1252 High-strength steel bolts with associated nuts and washers for structural engineering[S]. Sydney:Standards Association of Australia, 1996. [23] BARTH K E, ORBISON J G, NUKALA R, et al. Behavior of steel tension members subjected to uniaxial loading[J]. Journal of Constructional Steel Research, 2002, 58(5):1103-1120. [24] 王青松, 谢兴生, 佘颢.基于CNN-XGBoost混合模型的短时交通流预测[J].测控技术, 2019, 38(4):37-40, 67. WANG Qingsong, XIE Xingsheng, SHE Hao. Short-term traffic flow prediction based CNN-XGBoost hybrid model[J]. Measurement & Control Technology, 2019, 38(4):37-40, 67. [25] ZHOU S, LIU Z, WANG M, et al. Impacts of building configurations on urban stormwater management at a block scale using XGBoost[J]. Sustainable Cities and Society, 2022, 87:104235 [26] 刘彧祺, 张智斌, 陈昊昱, 等.基于XGBoost集成的可解释信用评分模型[J].数据通信, 2019, 40(3):27-32. LIU Jianqi, ZHANG Zhibin, CHEN Haoyu, et al. Interpretable credit scoring model based on XGBoost[J]. Dechnology Discussion, 2019, 40(3):27-32. [27] MÖLLER A, RUHLMANN-KLEIDER V, LELOUP C, et al. Photometric classification of type Ia supernovae in the SuperNova Legacy Survey with supervised learning[J]. Journal of Cosmology & Astroparticle Physics, 2016(12):008. [28] TAMAYO D, SILBURT A, VALENCIA D, et al. A machine learns to predict the stability of tightly packed planetary systems[J]. Astrophysical Journal, 2016, 832(2):L22. [29] PETER B, HOUGAARD J L, SMILGINS A. Applied cost allocation:The DEA-aumann-shapley approach[J]. European Journal of Operational Research, 2016, 254(2):667-678. [30] 陈洞天, 单杰, 周文丹.基于Xgboost的心血管疾病预测模型和指标分析研究[J].现代医院, 2021, 21(6):958-961. CHEN Dongtian, SHAN Jie, ZHOU Wendan. An XGBoost-based cardiovascular disease prediction model and index analysis research[J]. Modern Hospitals, 2021, 21(6):958-961 [31] 罗妍, 王枞, 叶文玲.基于XGBoost和SHAP的急性肾损伤可解释预测模型[J].电子与信息学报, 2022, 44(1):27-38. LUO Yan, WANG Cong, YE Wenling. An interpretable prediction model for acute kidney injury based on XGBoost and SHAP[J]. Journal of Electronics & Information Technology, 2022, 44(1):27-38. |