机械工程学报 ›› 2024, Vol. 60 ›› Issue (2): 62-80.doi: 10.3901/JME.2024.02.062
陈鑫1, 杨立飞1, 于雪2, 龚颖颖1
收稿日期:
2023-01-25
修回日期:
2023-07-16
出版日期:
2024-01-20
发布日期:
2024-04-09
通讯作者:
杨立飞(通信作者),男,1996年出生,博士研究生。主要研究方向为车身结构轻量化及连接接头力学性能。E-mail:yanglf21@mails.jlu.edu.cn作者简介:
陈鑫,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为汽车车身结构轻量化设计和汽车NVH分析与控制。E-mail:cx@jlu.edu.cn基金资助:
CHEN Xin1, YANG Lifei1, YU Xue2, GONG Yingying1
Received:
2023-01-25
Revised:
2023-07-16
Online:
2024-01-20
Published:
2024-04-09
摘要: 细观损伤力学分析广泛应用于韧性金属损伤、断裂、成形极限预测等领域。Gurson-Tvergaard-Needleman(GTN)损伤模型是细观损伤力学领域最为重要的经典模型之一。该模型将材料的细观孔洞演化过程与宏观力学行为相结合,描述材料在外部载荷作用下的细观损伤机理及宏观损伤失效行为。大量试验研究表明,在剪切载荷为主的应力状态下,材料内部孔洞体积分数并没有明显增加,但依然会发生失效。由于传统GTN模型只考虑孔洞体积分数变化对金属材料损伤行为的影响,使得GTN模型并不适合中、低应力三轴度下的损伤及断裂预测,因此多位学者都对原始GTN模型进行了修正。概述细观损伤力学和GTN模型的发展历程,并分析GTN模型的几种典型修正方法及其适用范围和优劣势,总结GTN模型参数标定方法。将GTN细观模型在工业领域中的应用分类整理,展望GTN模型的发展趋势,可为今后GTN模型的研究与应用提供参考。
中图分类号:
陈鑫, 杨立飞, 于雪, 龚颖颖. GTN细观损伤模型的发展与应用综述[J]. 机械工程学报, 2024, 60(2): 62-80.
CHEN Xin, YANG Lifei, YU Xue, GONG Yingying. Review of the Progress and Application on the GTN Meso-damage Model[J]. Journal of Mechanical Engineering, 2024, 60(2): 62-80.
[1] 余寿文, 冯西桥.损伤力学[M]. 北京:清华大学出版社, 1997. YU Shouwen, FENG Xiqiao. Damage mechanics[M]. Beijing:Tsinghua University Press, 1997. [2] GATEA S, OU H, LU B, et al. Modelling of ductile fracture in single point incremental forming using a modified GTN model[J]. Engineering Fracture Mechanics, 2017, 186:59-79. [3] 尚晓晴. 316LN钢空洞损伤的微观机理与热变形断裂准则的研究[D].上海:上海交通大学, 2019. SHANG Xiaoqing. Research on the micro-mechanics of void damage and the modeling of ductile fracture for hot deformation of the 316LN steel[D]. Shanghai:Shanghai Jiao Tong University, 2019. [4] YING Liang, LIU Wenquan, WANG Dantong, et al. Parameter calibration of GTN damage model and formability analysis of 22MnB5 in hot forming process[J]. Journal of Materials Engineering and Performance, 2017, 26(11):5155-5165. [5] YING Liang, WANG Dantong, LIU Wenquan, et al. On the numerical implementation of a shear modified GTN damage model and its application to small punch test[J]. International Journal of Material Forming, 2018, 11:527-539. [6] ABBASI M, SHAFAAT M, KETABCHI M, et al. application of the GTN model to predict the forming limit diagram of IF-steel[J]. Journal of Mechanical Science & Technology, 2012, 26(2):345-352. [7] RAMAZANI A, ABBASI M, PRAHL U, et al. Failure analysis of DP600 steel during the cross-die test[J]. Computational Materials Science, 2012, 64:101-105. [8] LIU J, LIU W, XUE W. Forming limit diagram prediction of AA5052/polyethylene/AA5052 sandwich sheets[J]. Materials & Design, 2013, 46:112-120. [9] BRUNET M, MGUIL S, MORESTIN F. Analytical and experimental studies of necking in sheet metal forming processes[J]. Journal of Materials Processing Technology, 1998, 80-81:40-46. [10] GANJIANI M. A damage model for predicting ductile fracture with considering the dependency on stress triaxiality and Lode angle[J]. European Journal of Mechanics-A/Solids, 2020, 84:104048. [11] BAO Y, WIERZBICKI T. On fracture locus in the equivalent strain and stress triaxiality space[J]. International Journal of Mechanical Sciences, 2004, 46(1):81-98. [12] PENG Z, ZHAO H, LI X. New ductile fracture model for fracture prediction ranging from negative to high stress triaxiality[J]. International Journal of Plasticity, 2021, 145:103057. [13] LOU Y, HUH H. Evaluation of ductile fracture criteria in a general three-dimensional stress state considering the stress triaxiality and the lode parameter[J]. Acta Mechanica Solida Sinica, 2013, 26(6):642-658. [14] KIRAN R, KHANDELWAL K. A triaxiality and Lode parameter dependent ductile fracture criterion[J]. Engineering Fracture Mechanics, 2014, 128:121-138. [15] BRÜNIG M, BRENNER D, GERKE S. Stress state dependence of ductile damage and fracture behavior:Experiments and numerical simulations[J]. Engineering Fracture Mechanics, 2015, 141:152-169. [16] KAMI A, DARIANI B M, VANINI A S, et al. Application of a GTN damage model to predict the fracture of metallic sheets subjected to deep-drawing[J]. Proceedings of the Romanian Academy-Series A:Mathematics, Physics, Technical Sciences, Information Science, 2014, 15(3):300-309. [17] AYATOLLAHI M R, DARABI A C, CHAMANI H R, et al. 3D micromechanical modeling of failure and damage evolution in dual phase steel based on a real 2D microstructure[J]. Acta Mechanica Solida Sinica, 2016, 29(1):95-110. [18] MCCLINTOCK F A. A criterion for ductile fracture by the growth of holes[J]. Journal of Applied Mechanics, 1968, 35:363-371. [19] RICE J R, TRACEY D M. On the ductile enlargement of voids in triaxial stress fields[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217. [20] THOMASON P F. A theory for ductile fracture by internal necking of cavities[J]. Journal of the Institute of Metals, 1968, 96(12):360-365. [21] GURSON A L. Continuum theory of ductile rupture by void nucleation and growth:Part I-Yield criteria and flow rules for porous ductile media[J]. Journal of Engineering Materials and Technology, 1977, 99(1):297-300. [22] GURSON A L. Porous rigid-plastic materials containing rigid inclusions-Yield function, plastic potential, and void nucleation[J]. Physical Metallurgy of Fracture, 1978:357-364. [23] 黄建科.金属成形过程的细观损伤力学模型及韧性断裂准则研究[D].上海:上海交通大学, 2009. HUANG Jianke. Study on meso. damage model and ductile fracture criterion in metal forming processes[D]. Shanghai:Shanghai Jiao Tong University, 2009. [24] TVERGAARD V. Influence of voids on shear band instabilities under plane strain conditions[J]. International Journal of Fracture, 1981, 17(4):389-407. [25] TVERGAARD V. Influence of void nucleation on ductile shear fracture at a free surface[J]. Journal of the Mechanics and Physics of Solids, 1982, 30(6):399-425. [26] CHU C, NEEDLEMAN A. Void nucleation effects in biaxially stretched sheets[J]. Journal of Engineering Materials and Technology, 1980, 102(3):249. [27] GOLOGANU M, LEBLOND J B, DEVAUX J. Approximate models for ductile metals containing non-spherical voids-Case of axisymmetric prolate ellipsoidal cavities[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(11):1723-1754. [28] PARDOEN T. Numerical simulation of low stress triaxiality ductile fracture[J]. Computers & Structures, 2006, 84(26-27):1641-1650. [29] MEAR M E, Hutchinson J W. Influence of yield surface curvature on flow localization in dilatant plasticity[J]. Mechanics of Materials, 1985, 4(3):395-407. [30] LASSANCE D, FABRÈGUE D, DELANNAY F, et al. Micromechanics of room and high temperature fracture in 6xxx Al alloys[J]. Progress in Materials Science, 2007, 52(1):62-129. [31] 姜薇.基于细观损伤机理的韧性断裂研究[D].西安:西北工业大学, 2016. JIANG Wei. Study of ductile fracture based on meso-damage mechanisms[D]. Xi'an:Northwestern Polytechnical University, 2016. [32] BROCKS W, SUN D Z, HÖNIG A. Verification of the transferability of micromechanical parameters by cell model calculations with visco-plastic materials[J]. International Journal of Plasticity, 1995, 11(8):971-989. [33] PARDOEN T, HUTCHINSON J W. An extended model for void growth and coalescence[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(12):2467-2512. [34] XUE Liang. Constitutive modeling of void shearing effect in ductile fracture of porous materials[J]. Engineering Fracture Mechanics, 2007, 75(11):3343-3366. [35] ACHOURI M, GERMAIN G, DAL SANTO, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Materials & Design, 2013, 50:207-222. [36] GATEA S, LU B, OU H, et al. Numerical simulation and experimental investigation of ductile fracture in SPIF using modified GTN model[C]//4th International Conference on New Forming Technology (ICNFT 2015), MATEC Web of Conferences, EDP Sciences, 2015, 21:04013. [37] CAO T, MAIRE E, VERDU C, et al. Characterization of ductile damage for a high carbon steel using 3D X-ray micro-tomography and mechanical tests-Application to the identification of a shear modified GTN model[J]. Computational Materials Science, 2014, 84:175-187. [38] NAHSHON K, HUTCHINSON J W. Modification of the Gurson model for shear failure[J]. European Journal of Mechanics, 2008, 27(1):1-17. [39] SUN Q, ZAN D, CHEN J, et al. Analysis of edge crack behavior of steel sheet in multi-pass cold rolling based on a shear modified GTN damage model[J]. Theoretical and Applied Fracture Mechanics, 2015, 80:259-266. [40] 孙权, 陈建钧, 李晓雪, 等.剪切修正GTN模型在小冲杆试验中的应用研究[J].机械工程学报, 2014, 50(24):79-85. SUN Quan, CHEN Jianjun, LI Xiaoxue, et al. Study on the application of shear modified GTN model to small punch test[J]. Journal of Mechanical Engineering, 2014, 50(24):79-85. [41] SUN Q, LU Y, CHEN J, et al. Identification of material parameters of a shear modified GTN damage model by small punch test[J]. International Journal of Fracture, 2020, 222:25-35. [42] NIELSEN K L, TVERGAARD V. Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[J]. Engineering Fracture Mechanics, 2010, 77(7):1031-1047. [43] MALCHER L, PIRES F, JMACD S. An assessment of isotropic constitutive models for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2012, 30-31:81-115. [44] MALCHER L, PIRES F, JMACD S. An extended GTN model for ductile fracture under high and low stress triaxiality[J]. International Journal of Plasticity, 2014, 54(2):193-228. [45] ZHOU J, GAO X, SOBOTKA J C, et al. On the extension of the Gurson-type porous plasticity models for prediction of ductile fracture under shear-dominated conditions[J]. International Journal of Solids and Structures, 2014, 51(18):3273-3291. [46] WANG S, CHEN Z, DONG C. Tearing failure of ultra-thin sheet-metal involving size effect in blanking process:Analysis based on modified GTN model[J]. International Journal of Mechanical Sciences, 2017, 133:288-302. [47] ZHAO P, CHEN Z, DONG C. Investigation and prediction of tearing failure during extrusion based on a modified shear damage model[J]. Mechanics of Materials, 2017, 112:28-39. [48] JIANG Wei, LI Yazhi, SU Jie. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics-A/Solids, 2016, 57:132-148. [49] LEMAITRE J. A continuous damage mechanics model for ductile fracture[J]. Transactions of the Asme Journal of Engineering Materials & Technology, 1985, 107(1):83-89. [50] LEMAITRE J, DESMORAT R, Sauzay M. Anisotropic damage law of evolution[J]. European Journal of Mechanics, 2000, 19(2):187-208. [51] Yang X, LI Y, Jiang W, et al. Ductile fracture prediction of additive manufactured Ti6Al4V alloy based on an extended GTN damage model[J]. Engineering Fracture Mechanics, 2021, 256(4):107989. [52] 吴鹤.筒形件强力旋压损伤模型及韧性断裂行为研究[D].哈尔滨:哈尔滨工业大学, 2021. WU He. Study on damage model and ductile fracture behavior for tube power spinning[D]. Harbin:Harbin Institute of Technology, 2021. [53] MALCHER L, REIS F J P, ANDRADE PIRES F M, et al. Evaluation of shear mechanisms and influence of the calibration point on the numerical results of the GTN model[J]. International Journal of Mechanical Sciences, 2013, 75:407-422. [54] ZAO H, HAO Z, YH A. An improved shear modified GTN model for ductile fracture of aluminium alloys under different stress states and its parameters identification[J]. International Journal of Mechanical Sciences, 2021, 192:106081. [55] GULLERUD A S, GAO X, DODDS R H, et al. Simulation of ductile crack growth using computational cells:numerical aspects[J]. Engineering Fracture Mechanics, 2000, 66(1):65-92. [56] ACHOURI M, GERMAIN G, DAL SANTO P, et al. Implementation and validation of a gurson damage model modified for shear loading:Effect of void growth rate and mesh size on the predicted behavior[J]. Key Engineering Materials, 2012, 504-506:691-696. [57] SLIMANE A, BOUCHOUICHA B, BENGUEDIAB M, et al. Parametric study of the ductile damage by the Gurson-Tvergaard-Needleman model of structures in carbon steel A48-AP[J]. Journal of Materials Research and Technology, 2015, 4(2):217-223. [58] SUN G, SUN F, CAO F, et al. Numerical simulation of tension properties for Al-Cu alloy friction stir-welded joints with GTN damage model[J]. Journal of Materials Engineering & Performance, 2015, 24(11):4358-4363. [59] CHHIBBER R, SINGH H, ARORA N, et al. Micromechanical modelling of reactor pressure vessel steel[J]. Materials & Design (1980-2015), 2012, 36:258-274. [60] KINGKLANG S, UTHAISANGSUK V. Plastic deformation and fracture behavior of X65 pipeline steel:Experiments and modeling[J]. Engineering Fracture Mechanics, 2018, 191:82-101. [61] 刘银泉.基于GTN损伤的铝合金管内高压成形的破裂预测[D].哈尔滨:哈尔滨工业大学, 2013. LIU Yinquan. Fracture prediction of aluminum alloy tube hydroforming based on GTN damage model[D]. Harbin:Harbin Institute of Technology, 2013. [62] Zhang Z L, Thaulow C, Ødegård J. A complete Gurson model approach for ductile fracture[J]. Engineering Fracture Mechanics, 2000, 67(2):155-168. [63] STEGLICH D, SIEGMUND T, BROCKS W. Micromechanical modeling of damage due to particle cracking in reinforced metals[J]. Computational Materials Science, 1999, 16(1-4):404-413. [64] FOAD R, GHOLAMHOSSIEN M, FARHAD A, et al. Determination of the constants of GTN damage model using experiment, polynomial regression and kriging methods[J]. Applied Sciences, 2017, 7(11):1179. [65] DONG C, YL A, XUAN Y, et al. Efficient parameters identification of a modified GTN model of ductile fracture using machine learning[J]. Engineering Fracture Mechanics, 2021, 245:107535. [66] JI H, MA Z, Huang X, et al. Damage evolution of 7075 aluminum alloy basing the Gurson Tvergaard Needleman model under high temperature conditions[J]. Journal of Materials Research and Technology, 2022, 16:398-415. [67] JI H, YAO R, HUANG X, et al. Damage evolution of 6005A aluminum alloy sheet based on gurson-tvagaard-needleman model:Experiment and finite element simulation[J]. Journal of Materials Engineering and Performance, 2022, 31(5):3902-3917. [68] YILDIZ R A, YILMAZ S. Experimental investigation of GTN model parameters of 6061 Al alloy[J]. European Journal of Mechanics-A/Solids, 2020, 83:104040. [69] LIU X, WANG C, DENG Q, et al. High-temperature fracture behavior of MnS inclusions based on GTN model[J]. Journal of Iron and Steel Research International, 2019, 26(9):941-952. [70] THORSTEN H, OSOVSKI S, ULLMANN M, et al. GTN model-based material parameters of AZ31 magnesium sheet at various temperatures by means of SEM in-situ testing[J]. Crystals, 2020, 10(10):856. [71] CHEN Z, DONG X. The GTN damage model based on Hill'48 anisotropic yield criterion and its application in sheet metal forming[J]. Computational Materials Science, 2009, 44(3):1013-1021. [72] KAMI A, DARIANI B M, VANINI A S, et al. Numerical determination of the forming limit curves of anisotropic sheet metals using GTN damage model[J]. Journal of Materials Processing Technology, 2014, 216:472-483. [73] DING F, HONG T, XU Y, et al. Prediction of fracture behavior of 6061 aluminum alloy based on GTN model[J]. Materials, 2022, 15(9):3212. [74] LI H, FU M, LU J, et al. Ductile fracture:Experiments and computations[J]. International Journal of Plasticity, 2011, 27(2):147-180. [75] NGUYEN H H, NGUYEN T N, VU H C. Ductile fracture prediction and forming assessment of AA6061-T6 aluminum alloy sheets[J]. International Journal of Fracture, 2018, 209(1-2):143-162. [76] JIANG W, LI Y, SU J. Modified GTN model for a broad range of stress states and application to ductile fracture[J]. European Journal of Mechanics/A Solids, 2016, 57:132-148. [77] TENG B, WANG W, XU Y. Ductile fracture prediction in aluminium alloy 5A06 sheet forming based on GTN damage model[J]. Engineering Fracture Mechanics, 2017, 186:242-254. [78] SPRINGMANN M, KUNA M. Identification of material parameters of the Gurson-Tvergaard-Needleman model by combined experimental and numerical techniques[J]. Computational Materials Science, 2005, 32(3-4):544-552. [79] LI X, CHEN Z, DONG C. Failure and forming quality study of metallic foil blanking with different punch-die clearances[J]. The International Journal of Advanced Manufacturing Technology, 2021, 115(9-10):3163-3176. [80] ACHOURI M, GERMAIN G, SANTO P D, et al. Experimental characterization and numerical modeling of micromechanical damage under different stress states[J]. Materials & Design, 2013, 50:207-222. [81] SUN Q, LU Y, CHEN J, et al. Identification of material parameters of a shear modified GTN damage model by small punch test[J]. International Journal of Fracture, 2020, 222:25-35. [82] ALI A N, HUANG S J. Ductile fracture behavior of ECAP deformed AZ61 magnesium alloy based on response surface methodology and finite element simulation[J]. Materials Science and Engineering, 2019, 746:197-210. [83] XU J, SUN T, WEN X, et al. J-R curve determination of G20Mn5QT cast steel using CT specimen with varying in-plane and out-of-plane constraints based on normalization method and GTN model[J]. Journal of Materials Research and Technology, 2022, 18:3502-3519. [84] KIRAN R, KHANDELWAL K. Gurson model parameters for ductile fracture simulation in ASTM A992 steels[J]. Fatigue & Fracture of Engineering Materials & Structures, 2014, 37(2):171-183. [85] SHIKALGAR T D, DUTTA B K, CHATTOPADHYAY J. Analysis of p-SPT specimens using Gurson parameters ascertained by artificial neural network[J]. Engineering Fracture Mechanics, 2020, 240:107324. [86] 赵鹏经.金属板材成形过程中的细观损伤机理研究及其数值模拟[D].北京:北京科技大学, 2018. ZHAO Pengjing. The mesoscopic damage mechanism research and numerical simulation in the process of sheet metal forming[D]. Beijing:University of Science and Technology Beijing, 2018. [87] 刘文权, 盈亮, 王丹彤, 等.热冲压成形过程细观损伤演化机理研究[J].机械工程学报, 2016, 52(14):31-39. LIU Wenquan, YING Liang, WANG Dantong, et al. Investigation of mesoscopic damage evolution mechanism of high strength steel in hot stamping process[J]. Journal of Mechanical Engineering, 2016, 52(14):31-39. [88] 盈亮, 刘文权, 王丹彤, 等. 7075-T6铝合金温成形损伤演化实验与仿真[J].中国有色金属学报, 2016, 26(7):1383-1390. YING Liang, LIU Wenquan, WANG Dantong, et al. Experimental and simulation of damage evolution behavior for 7075-T6 aluminum alloy in warm forming[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(7):1383-1390. [89] GAO T, YING L, HU P, et al. Investigation on mechanical behavior and plastic damage of AA7075 aluminum alloy by thermal small punch test:Experimental trials, numerical analysis[J]. Journal of Manufacturing Processes, 2020, 50:1-16. [90] YING L, GAO T, RONG H, et al. On the thermal forming limit diagram (TFLD) with GTN mesoscopic damage model for AA7075 aluminum alloy:Numerical and experimental investigation[J]. Journal of Alloys and Compounds, 2019, 802:675-693. [91] WANG R, CHEN Z, LI Y, et al. Failure analysis of AZ31 magnesium alloy sheets based on the extended GTN damage model[J]. International Journal of Minerals, Metallurgy, and Materials, 2013, 20(12):1198-1207. [92] WANG L, LI L. Parameter identification of GTN model using response surface methodology for high-strength steel BR1500HS[J]. Journal of Materials Engineering and Performance, 2017, 26(8):3831-3838. [93] TU H, SCHMAUDER S, WEBER U. Numerical study of electron beam welded butt joints with the GTN model[J]. Computational Mechanics, 2012, 50(2):245-255. [94] JIE Y. Micromechanical analysis of in-plane constraint effect on local fracture behavior of cracks in the weakest locations of dissimilar metal welded joint[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(9):840-850. [95] WU X, SHUAI J, XU K, et al. Determination of local true stress-strain response of X80 and Q235 girth-welded joints based on digital image correlation and numerical simulation[J]. International Journal of Pressure Vessels and Piping, 2020, 188(3):104232. [96] NIELSEN K. Predicting failure response of spot welded joints using recent extensions to the Gurson model[J]. Computational Materials Science, 2010, 48(1):71-82. [97] QIANG B, WANG X. Ductile crack growth behaviors at different locations of a weld joint for an X80 pipeline steel:A numerical investigation using GTN models[J]. Engineering Fracture Mechanics, 2019, 213:264-279. [98] NÈGRE P, STEGLICH D, BROCKS W, et al. Numerical simulation of crack extension in aluminium welds[J]. Computational Materials Science, 2003, 28(3-4):723-731. [99] 王涛.基于剪切修正GTN模型的高强钢材及T形焊接接头断裂性能研究[D].北京:北京交通大学, 2019. WANG Tao. Study on fracture performance of high strength steel and T-shape welded connections based on shear modified GTN model[J]. Beijing:Beijing Jiaotong University, 2019. [100] LIU P, HU Z, WANG S, et al. Finite element analysis of the void growth and interface failure of ductile adhesive joints[J]. Journal of Failure Analysis and Prevention, 2018, 18(2):291-303. [101] KIM Y S, YANG S H. Effect of plastic anisotropy on the formability of aluminum 6016-T4 sheet material[J]. Chinese Journal of Mechanical Engineering, 2017, 30:625-631. [102] 陈志英, 董湘怀.各向异性GTN损伤模型及其在板料成形中的应用[J].上海交通大学学报, 2008(9):1414-1419. CHEN Zhiying, DONG Xianghuai. The anisotropic GTN damage model and its application in sheet metal forming[J]. Journal of Shanghai Jiao Tong University, 2008(9):1414-1419. [103] HILL R. A theory of the yielding and plastic flow of anisotropic metals[J]. Proceedings of the Royal Society of London, 1948, 193(1033):281-297. [104] WU H, ZHUANG X, ZHANG W, et al. Anisotropic ductile fracture:experiments, modeling, and numerical simulations[J]. Journal of Materials Research and Technology, 2022, 20:833-856. [105] WANG Z, HU Z, LIU K, et al. Application of a material model based on the Johnson-Cook and Gurson-Tvergaard-Needleman model in ship collision and grounding simulations[J]. Ocean Engineering, 2020, 205:106768. [106] TONG Y, ZHAO J, QUAN G. Visualization of the damage evolution for Ti-3Al-2Mo-2Zr alloy during a uniaxial tensile process using a microvoids proliferation damage model[J]. High Temperature Materials and Processes, 2021, 40(1):310-324. [107] LI Z, LI R, JI C, et al. Development of a modified gurson-tvergaard-needleman damage model characterizing the strain-rate-dependent behavior of 6061-T5 aluminum alloy[J]. Journal of Materials Engineering and Performance, 2022, 31:7662-7672. [108] LI G, CUI S. Meso-mechanics and damage evolution of AA5182-O aluminum alloy sheet based on the GTN model[J]. Engineering Fracture Mechanics, 2020, 235:107162. |
[1] | 万炜强, 韩光超, 王新云, 吕佩, 刘富初, 胡济涛, 柏伟, 徐林红. 超声辅助微塑性成形工艺研究进展[J]. 机械工程学报, 2024, 60(18): 89-115. |
[2] | 李宏伟, 高佳, 孙新新, 张昕, 郑泽邦, 詹梅. 面向高性能塑性成形的多尺度建模仿真研究进展[J]. 机械工程学报, 2024, 60(1): 27-43. |
[3] | 田少杰, 刘雪峰, 王文静, 崔庆贺, 郝健博. 超声振动系统的研究现状及其在塑性成形领域的应用进展[J]. 机械工程学报, 2023, 59(20): 198-214. |
[4] | 王标, 杨素淞, 白春玉, 杨强, 胡伟平, 詹志新. 材料重复冲击损伤模型与数值计算方法研究[J]. 机械工程学报, 2023, 59(2): 138-150. |
[5] | 张洪瑞, 詹梅, 郑泽邦, 李锐. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报, 2022, 58(20): 166-185. |
[6] | 徐竹田, 孙磊, 姜天豪, 彭林法, 来新民. 钛板微成形断裂尺度效应及细观损伤准则[J]. 机械工程学报, 2022, 58(16): 51-57. |
[7] | 宋明, 马帅, 蒋文春, 杜传胜, 王炳英. 小冲杆试验评价平板式固体氧化物燃料电池钎焊密封接头力学性能研究[J]. 机械工程学报, 2021, 57(10): 178-186. |
[8] | 彭艳, 李浩然, 刘洋, 章健. 基于均布临界域本征损伤耗散的疲劳极限等量关系[J]. 机械工程学报, 2019, 55(10): 54-61. |
[9] | 盈亮, 史栋勇, 胡平, 刘文权. 基于连续介质损伤力学的高强度钢板热成形性数值预测[J]. 机械工程学报, 2016, 52(4): 36-44. |
[10] | 刘文权, 盈亮, 王丹彤, 鲁可心, 胡平. 热冲压成形过程细观损伤演化机理研究*[J]. 机械工程学报, 2016, 52(14): 31-39. |
[11] | 刘俭辉,王生楠,黄新春,傅益战. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20): 120-127. |
[12] | 彭艳, 李浩然. 考虑附加强化效应的多轴高周疲劳损伤演化模型[J]. 机械工程学报, 2015, 51(16): 135-142. |
[13] | 孙权;陈建钧;李晓雪;闫玉曦;潘红良. 剪切修正GTN模型在小冲杆试验中的应用研究[J]. , 2014, 50(24): 79-85. |
[14] | 秦红波;李望云;李勋平;张新平. BGA结构无铅微焊点的低周疲劳行为研究[J]. , 2014, 50(20): 54-62. |
[15] | 华林;钱东升. 轴承环轧制成形理论和技术[J]. , 2014, 50(16): 70-76. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||