机械工程学报 ›› 2022, Vol. 58 ›› Issue (20): 166-185.doi: 10.3901/JME.2022.20.166
张洪瑞1,2,3, 詹梅1,2,3, 郑泽邦1,2,3, 李锐1,3
收稿日期:
2022-05-05
修回日期:
2022-08-08
出版日期:
2022-10-20
发布日期:
2022-12-27
通讯作者:
詹梅(通信作者),女,1972年出生,博士,教育部“长江学者”特聘教授,国家杰出青年基金获得者,国家“万人计划”科技创新领军人才。主要研究方向为高性能轻量化薄壁复杂构件精确塑性成形制造理论、技术与装备。E-mail:zhanmei@nwpu.edu.cn
作者简介:
张洪瑞,男,1990年出生,博士研究生。主要研究方向为航空航天高性能轻量化薄壁复杂构件精确成形设计制造与工艺装备技术,飞行器数字化设计与制造技术。E-mail:zhanghongrui_smile@163.com
基金资助:
ZHANG Hongrui1,2,3, ZHAN Mei1,2,3, ZHENG Zebang1,2,3, LI Rui1,3
Received:
2022-05-05
Revised:
2022-08-08
Online:
2022-10-20
Published:
2022-12-27
摘要: 薄壁曲面构件是广泛应用于航空航天等高端运载装备的关键构件。大型薄壁曲面构件成形制造技术是新一代航空航天飞行器、战略导弹和船舶等尖端装备向大型化、轻量化、高性能化、长寿命和高可靠性方向发展的迫切需要。然而,这类构件的壁薄、直径等尺寸大、曲率变化、大小尺寸极端结合,且材料轻质高强、性能要求高等,使其制造难度大。首先概述了航天领域大型薄壁回转曲面构件及其制造技术的发展历程与类型,据此针对不同类型的大型薄壁回转曲面构件制造技术综述了其应用与研究进展,然后对比分析了各制造工艺的技术特色、构件性能与发展潜力,探讨了大型薄壁回转曲面构件制造技术的未来发展趋势与面临的挑战。
中图分类号:
张洪瑞, 詹梅, 郑泽邦, 李锐. 航天大型薄壁回转曲面构件成形制造技术的发展与挑战[J]. 机械工程学报, 2022, 58(20): 166-185.
ZHANG Hongrui, ZHAN Mei, ZHENG Zebang, LI Rui. Development and Challenge of Forming Manufacturing Technologies for Aerospace Large-Scale Thin-Wall Axisymmetric Curved-Surface Component[J]. Journal of Mechanical Engineering, 2022, 58(20): 166-185.
[1] 苑世剑. 复杂曲面薄壁构件流体压力成形理论与技术研究进展[J]. Engineering,2021,7(3):189-206. YUAN Shijian. Fundamentals and processes of fluid pressure forming technology for complex thin-walled components[J]. Engineering,2021,7(3):189-206. [2] 李永兵,马运五,楼铭,等. 轻量化薄壁结构点连接技术研究进展[J]. 机械工程学报,2020,56(6):125-146. LI Yongbin,MA Yunwu,Lou Ming,et al. Advances in spot joining technologies of lightweight thin-walled structures[J]. Journal of Mechanical Engineering,2020,56(6):125-146. [3] 苑世剑,刘伟,王国峰,等. 轻合金复杂薄壁构件流体压力成形技术新进展[J]. 上海航天,2019,36(2):31-37. YUAN Shijian,LIU Wei,WANG Guofeng,et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai,2019,36(2):31-37. [4] 王国庆,李曙光,吴会强. 重型火箭贮箱大型结构制造技术现状及发展分析[J]. 宇航材料工艺,2014,44(z1):1-6. WANG Guoqing,LI Shuguang,WU Huiqiang. Status and development analyses on manufacturing technologies for large scale structures of heavy—lift launch vehicle propellant tanks[J]. Aerospace Materials & Technology,2014,44(z1):1-6. [5] 刘欣,王国庆,李曙光,等. 重型运载火箭关键制造技术发展展望[J]. 航天制造技术,2013(1):1-6. LIU Xin,WANG Guoqing,LI Shuguang,et al. Forecasts on crucial manufacturing technology development of heavy lift launch vehicle[J]. Aerospace Manufacturing Technology,2013(1):1-6. [6] 姚君山,蔡益飞,李程刚. 运载火箭箭体结构制造技术发展与应用[J]. 航空制造技术,2007(10):36-40,42. YAO Junshan,CAI Yifei,LI Chenggang. Development and application of manufacturing technology for launch vehicle body structure[J]. Aeronautical Manufacturing Technology,2007(10):36-40,42. [7] 郑新宇. 超大直径运载火箭贮箱箱底龙门铣焊装备静动态分析[D]. 秦皇岛:燕山大学,2020. ZHENG Xinyu. Static and dynamic analysis of gantry milling and welding equipment at the bottom of storage tank of super large diameter launch vehicle[D]. Qinhuangdao:Yanshan University,2020. [8] 李宝蓉,张丽娜. H-2B运载火箭贮箱制造技术与应用[J]. 航天制造技术,2008(5):35-37. LI Baorong,ZHANG Lina. Manufacturing technology and application of H-2B launch vehicle tank[J]. Aerospace Manufacturing Technology,2008(5):35-37. [9] JENNIFER H. Precision meets progress in welding on SLS liquid oxygen tank hardware [EB/OL]. [2017-08-07]. https://www.nasa.gov/exploration/systems/sls/multimedia/progress-in-welding-on-sls-liquid-oxygen-tank.html. [10] 鲁宇. 中国运载火箭技术发展[J]. 宇航总体技术,2017,1(3):1-8. LU Yu. Space launch vehicle’s development in China[J]. Astronautical Systems Engineering Technology,2017,1(3):1-8. [11] 刘鲁江,梁建国,吴佳林,等. 运载火箭演进及智能技术展望[J]. 上海航天(中英文),2021,38(3):53-62. LIU Lujiang,LIANG Jianguo,WU Jialin,et al. Evolution and intelligent technology prospect of launch vehicles[J]. Aerospace Shanghai(Chinese & English),2021,38(3):53-62. [12] 顾名坤,何巍,唐科,等. 中国液体运载火箭结构系统发展规划研究[J]. 宇航总体技术,2021,5(2):55-67. GU Mingkun,HE Wei,TANG Ke,et al. Research on the development plan of Chinese liquid launch vehicle structure system[J]. Astronautical Systems Engineering Technology,2021,5(2):55-67. [13] 李东,李平岐. 长征五号火箭技术突破与中国运载火箭未来发展[J/OL]. 航空学报,[2022-06-21]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27269. LI Dong,LI Pingqi. Technological breakthroughs of LM-5 and future developments of China’s launch vehicle[J/OL]. Acta Aeronautica et Astronautica Sinica,[2022-06-21]. https://hkxb.buaa.edu.cn/CN/10.7527/S1000-6893.2022.27269. [14] 航天科技集团一院突破大型铝合金贮箱箱底整体制造难题[J]. 铝加工,2017(3):21. Aerospace Technology Group one breakthrough in the overall manufacturing of large aluminum alloy tank cases[J]. Aluminium Fabrication,2017(3):21. [15] 航天科技一院211厂突破大型铝合金贮箱箱底整体制造难题[J]. 国防制造技术,2017(1):8. The 211 factory of aerospace technology first breaks through the overall manufacturing problem of large aluminum alloy tank box bottom[J]. Defense Manufacturing Technology,2017(1):8. [16] 徐婷婷. 航天科技一院研制的我国首件5米直径共底结构贮箱下线[EB/OL]. [2019-05-09]. http://www.spacechina.com/n25/n2014789/n2014809/c2623688/content.html. XU Tingting. The first 5-meter-diameter tank with common bottom structure in China developed by the first Academy of Aerospace Science and technology[EB/OL]. [2019-05-09]. http://www.spacechina.com/n25/n2014789/n2014809/c2623688/content.html. [17] 黄诚,刘德博,吴会强,等. 我国航天运载器复合材料贮箱应用展望[J]. 沈阳航空航天大学学报,2016,33(2):27-35. HUANG Cheng,LIU Debo,WU Huiqiang,et al. Application prospects of composite propellant tanks in domestic launch vehicles[J]. Journal of Shenyang Aerospace University,2016,33(2):27-35. [18] ANDREA Z,JANKA W,ANJA W,et al. Challenges in the technology development for additive manufacturing in space[J]. Chinese Journal of Mechanical Engineering:Additive Manufacturing Frontiers,2022,1:100018. [19] ZHAN Mei,GAO Pengfei. Encyclopedia of materials:Metals and alloys:Power spinning of metallic materials for producing axisymmetric hollow parts and structures[M]. Amsterdam:Elsevier,2020. [20] 刘伟,徐永超,陈一哲,等. 薄壁曲面整体构件流体压力成形起皱机理与控制[J]. 机械工程学报,2018,54(9):37-44. LIU Wei,XU Yongchao,CHEN Yizhe,et al. Mechanism and controlling of wrinkles during hydroforming of integral thin-walled curved shell[J]. Journal of Mechanical Engineering,2018,54(9):37-44. [21] 严思梁. 基于建模的铝合金薄壁件电磁渐进成形机理研究[D]. 西安:西北工业大学,2017. YAN Siliang. Modelling based study on mechanism of electromagnetic incremental forming of thin-walled aluminum component[D]. Xi’an:Northwestern Polytechnical University,2017. [22] 郝新,马志超,郭洪飞,等. 大型钛合金零件内加热超塑性成形模具设计[J]. 锻压技术,2006(3):89-91. HAO Xin,MA Zhichao,GUO Hongfei,et al. Die design by superplastic forming for large titanium alloy parts at inner heating[J]. Forging & Stamping Technology,2006(3):89-91. [23] 田志杰,苏志强,杜晗,等. 大直径铝合金压力容器椭圆形拼焊封头研究[J]. 化工装备技术,2017,38(1):31-34. TIAN Zhijie,SU Zhiqiang,DU Han,et al. Study on the elliptical tailor-welded head of aluminum alloy pressure vessel with large diameter[J]. Chemical Equipment Technology,2017,38(1):31-34. [24] 宋建岭,王昆,李超,等. 5米级铝锂合金瓜瓣搅拌摩擦焊接工艺及组织性能研究[J]. 导弹与航天运载技术,2020(4):102-106. SONG Jianling,WANG Kun,LI Chao,et al. Study on process and microstructure and mechanical properties of 5m AL-Li alloy melon-valve with FSW[J]. Missiles and Space Vehicles,2020(4):102-106. [25] 张杰刚,李继光,周超,等. 拉形轨迹对铝合金贮箱箱底瓜瓣拉形成形的影响[J]. 锻压技术,2019,44(10):29-33. ZHANG Jiegang,LI Jiguang,ZHOU Chao,et al. Influence of stretch forming trajectory on stretch forming of melon shaped bottom for aluminum alloy tank[J]. Forging & Stamping Technology,2019,44(10):29-33. [26] ZHANG Hongrui,ZHAN Mei,ZHENG Zebang,et al. A systematic study on effects of process parameters on spinning of thin-walled curved surface parts with 2195 Al-Li alloy tailor welded blanks produced by FSW[J]. Frontiers in Materials-Structural Materials,2021,8:809018. [27] 佟铮,何风曼,李振声. 薄壁半球形曲面零件爆炸成形工艺研究[J]. 锻压技术,2000(3):34-36. TONG Zheng,HE Fengman,LI Zhensheng. Study on explosive forming technology of thin-walled hemispherical surface parts[J]. Forging & Stamping Technology,2000(3):34-36. [28] SILVA M B,MARTINS P. Incremental Sheet Forming[J]. Comprehensive Materials Processing,2014,6(2):7-26. [29] 王成和,刘克璋. 旋压技术[M]. 福州:福建科学技术出版社,2017. WANG Chenghe,LIU Kezhang. Spin technology[M]. Fuzhou:Fujian science and Technology Press,2017. [30] WONG C C,DEAN T A,LIN J G. A review of spinning,shear forming and flow forming processes[J]. International Journal of Machine Tools & Manufacture,2003,43(14):1419-1435. [31] YANG D Y,BAMBACH M,CAO J,et al. Flexibility in metal forming[J]. CIRP Annals-Manufacturing Technology,2018,67(2):743-765. [32] XIA Qinxiang,XIAO Gangfeng,LONG Hui,et al. A review of process advancement of novel metal spinning[J]. International Journal of Machine Tools & Manufacture,2014,85:100-121. [33] 张涛. 旋压成形工艺[D]. 北京:化学工业出版社,2009. ZHANG tao. Spin forming process[D]. Beijing:Chemical Industry Press,2009. [34] ZHANG Hongrui,ZHAN Mei,ZHENG Zebang,et al. Manufacture of thin-walled axisymmetric components by friction stir welding and spinning of Al-Li alloy [J]. JOM,2022,74(9):3248-3260. [35] 张晋辉,杨合,詹梅,等. 旋轮参数对大型变壁厚椭球封头强力旋压成形的影响[J]. 塑性工程学报,2011,18(2):114-119. ZHANG Jinhui,YANG He,ZHAN Mei,et al. Influences of roller parameters on power spinning of large ellipsoidal heads with variable thickness[J]. Journal of Plasticity Engineering,2011,18(2):114-119. [36] 张晋辉. D406A大型变壁厚椭球封头强旋成形规律研究[D]. 西安:西北工业大学,2012. ZHANG Jinhui. Deformation laws of power spinning of D406A large ellipsoidal heads with variable thicknesses[D]. Xi’an:Northwestern Polytechnical University,2012. [37] 詹梅,李志欣,高鹏飞,等. 铝合金大型薄壁异型曲面封头旋压成形研究进展[J]. 机械工程学报,2018,54(9):86-96. ZHAN Mei,LI Zhixin,GAO Pengfei,et al. Advances in spinning of aluminum alloy large-sized thin-walled and special-curved surface head[J]. Journal of Mechanical Engineering,2018,54(9):86-96. [38] 崔笑蕾,詹梅,高鹏飞,等. 虑及板坯几何和性能波动的薄壁件塑性成形数值模拟研究进展[J]. 航空学报,2021,42(10):105-118. CUI Xiaolei,ZHAN Mei,GAO Pengfei,et al. Advances in numerical simulation of plastic forming of thin-walled components considering blank geometry and performance fluctuation[J]. Acta Aeronautica et Astronautica Sinica,2021,42(10):105-118. [39] CUI Xiaolei,ZHAN Mei,GAO Pengfei,et al. Influence of blank thickness fluctuation on flange state and final thickness distribution in the power spinning of thin-walled head[J]. The International Journal of Advanced Manufacturing Technology,2018,99:363-372. [40] CUI Xiaolei,ZHAN Mei,GAO Pengfei,et al. Influence of blank flatness on the forming characteristics in the spinning of aluminum alloy thin-walled special head[J]. International Journal of Advanced Manufacturing Technology,2020,107:3259-3266. [41] 张娟娟. 我国首个3.35米直径铝锂合金火箭贮箱诞生[EB/OL]. [2000-01-08]. http://www.spacechina.com/n25./n2014789/n2888836/c3104207/content.html. ZHANG Juanjuan. China’s first 3.35 m diameter Al-Li alloy rocket storage tank has been successfully developed[EB/OL]. [2000-01-08]. http://www.spacechina.com/n25../n2014789/n2888836/c3104207/content.html. [42] 沈宏华,赵淘. 八院成功研制国内最大整体成形箱底超长贮箱[EB/OL]. [2021-11-02]. https://mp.weixin.qq.com/s/9olnFNoVA5ci2ZhTeZyMiA. SHEN Honghua,ZHAO Tao. The largest super-long integrally formed tank in China developed by the eighth Institute of Aerospace Science and Technology Group[EB/OL]. [2021-11-02]. https://mp.weixin.qq.com/s/9olnFNoVA5ci2ZhTeZyMiA. [43] YANG Zhongze,XU Wenchen,WU He,et al. Enhancing hoop strength of titanium alloy tube by cross spinning[J]. International Journal of Machine Tools and Manufacture,2020,152:103530. [44] IMAMURA Y,IKAWA K,SAKANE Y,et al. Investigation of forming accuracy in mandrel-free hot-spinning[J]. Procedia Engineering,2017,207:1701-1706. [45] IMAMURA Y,IKAWA K,MOTOYAMA K,et al. Deformation characteristics of Ti-6Al-4V plate in mandrel-free hot spinning[J]. Procedia Manufacturing,2018,15:1207-1214. [46] XIA Qinxiang,LONG Jinchuan,XIAO Gangfeng,et al. Deformation mechanism of ZK61 magnesium alloy cylindrical parts with longitudinal inner ribs during hot backward flow forming[J]. Journal of Materials Processing Technology,2021,296:117197. [47] 苑世剑,刘伟,徐永超. 板材液压成形技术与装备新进展[J]. 机械工程学报,2015,51(8):20-28. YUAN Shijian,LIU Wei,XU Yongchao. New development on technology and equipment of sheet hydroforming[J]. Journal of Mechanical Engineering,2015,51(8):20-28. [48] 苑世剑,刘伟,王国峰,等. 轻合金复杂薄壁构件流体压力成形技术新进展[J]. 上海航天,2019,36(2):31-37. YUAN Shijian,LIU Wei,WANG Guofeng,et al. Advances in fluid pressure forming of complex light metal thin-walled components[J]. Aerospace Shanghai,2019,36(2):31-37. [49] 刘伟,徐永超,胡蓝,等. 大尺度薄壁曲面整体构件流体压力成形技术与装备[J]. 锻压技术,2020,45(8):42-48. LIU Wei,XU Yongchao,HU Lan,et al. Technology and equipment of hydroforming for integrated thin-walled curved parts with large size[J]. Forging & Stamping Technology,2020,45(8):42-48. [50] 汪志强,黄亮,李建军,等. 大型铝合金曲面零件电磁渐进成形线圈结构优化设计[J]. 塑性工程学报,2015,22(6):71-77. WANG Zhiqiang,HUANG Liang,LI Jianjun,et al. Structure optimization design of coil on electromagnetic incremental forming of large aluminum alloy curved surface parts[J]. Journal of Plasticity Engineering,2015,22(6):71-77. [51] LONG Anlin,WAN Min,WU Wenping,et al. Forming methodology and mechanism of a novel sheet metal forming technology - electromagnetic superposed forming (EMSF)[J]. International Journal of Solids and Structures,2018,151:165-180. [52] YAN Siliang,YANG He,LI Hongwei,et al. Experimental study of macro–micro dynamic behaviors of 5A0X aluminum alloys in high velocity deformation[J]. Materials Science and Engineering:A,2014,598:197-206. [53] YAN Siliang,YANG He,LI Hongwei,et al. Variation of strain rate sensitivity of an aluminum alloy in a wide strain rate range:Mechanism analysis and modeling[J]. Journal of Alloys & Compounds,2016,688:776-786. [54] LIU Xianlong,HUANG Liang,LI Jianjun,et al. An electromagnetic incremental forming (EMIF) strategy for large-scale parts of aluminum alloy based on dual coil[J]. International Journal of Advanced Manufacturing Technology,2019,104(5):1-21. [55] FENG Fei,LI Jianjun,CHEN Rongchuan,et al. Multi-point die electromagnetic incremental forming for large-sized sheet metals[J]. Journal of Manufacturing Processes,2021,62(2021):458-470. [56] 张顺,刘小刚. 钛合金超塑性成形过程的数值模拟[J]. 航空发动机,2017,43(6):69-75. ZHANG Shun,LIU Xiaogang. Numerical simulation of super plastic forming process of titanium alloy[J]. Aeroengine,2017,43(6):69-75. [57] 李志强. 铝合金薄壁壳体超塑性气胀成形壁厚均匀性研究[D]. 北京:机械科学研究总院,2017. LI Zhiqiang. Research on the uniformity of wall thickness for superplastic bulging forming of aluminum alloy thin shell[D]. Beijing:China Academy of Machinery Science and Technology Group,2017. [58] 田志杰,刘娟,李聪颖,等. 大直径2A14铝合金压力容器椭圆形封头结构研究[J]. 化工设计,2016,26(5):34-36,1. TIAN Zhijie,LIU Juan,LI Congying,et al. Study on the structure of elliptical head of large diameter 2A14 aluminum alloy pressure vessel[J]. Chemical Engineering Design,2016,26(5):34-36,1. [59] 陈志林,田洪波,刘应虎,等. SA516Gr70钢大型拼焊封头焊接工艺研究[J]. 大型铸锻件,2011(5):9-14. CHEN Zhilin,TIAN Hongbo,LIU Yinghu,et al. Research for welding process of large welding head of SA516Gr70 steel[J]. Heavy Casting and Forging,2011(5):9-14. [60] 王士林,刘中仁,赵秀运. 核电站钢制安全壳底封头拼装方式与焊接变形控制[J]. 电焊机,2019,49(4):244-249. WANG Shilin,LIU Zhongren,ZHAO Xiuyun. Brief analysis of assembly and weld deformation control of steel CVBH in nuclear power plant[J]. Electric Welding Machine,2019,49(4):244-249. [61] 杨占,湛利华,王萌,等. 椭球曲面薄壁构件蠕变时效成形仿真与试验[J]. 锻压技术,2018,43(2):76-83. YANG Zhan,ZHAN Lihua,WANG Meng,et al. Simulation and experiment on creep aging for thin wall component with ellipsoid surface[J]. Forging & Stamping Technology,2018,43(2):76-83. [62] 韩志仁,戴良景,张凌云. 飞机大型蒙皮和壁板制造技术现状综述[J]. 航空制造技术,2009(4):64-66. HAN Zhiren,DAI Liangjing,ZANG Lingyun. Current status of large aircraft skin and panel manufacturing technologies[J]. Aeronautical Manufacturing Technology,2008,25(3):1-5. [63] 郭廷玮,李安定,徐介平. 金属材料的高温强度理论:设计[M]. 北京:科学出版社,1983. GUO Tingwei,LI Anding,XU Jieping. Metallic materials of high temperature strength theory and design [M]. Beijing:Science Press,1983. [64] ZHANG Liwen,LI Heng,BIAN Tianjun,et al. Advances and challenges on springback control for creep age forming of aluminum alloy[J]. Chinese Journal of Aeronautics,[2021-11-23]. https://doi.org/10.1016/j.cja.2021.10.019. [65] BIAN Tianjun,LI Heng,YANG Jingchao,et al. Through-thickness heterogeneity and in-plane anisotropy in creep aging of 7050 Al alloy[J]. Materials & Design,2020,196:1-15. [66] HEINZ A,HASZLER A,KEIDEL C,et al. Recent development in aluminum alloys for aerospace applications[J]. Materials Science & Engineering A,2000,280(1):102-107. [67] 刘贺,何铁军,万李,等. 双曲率2219铝合金板蠕变时效成形技术研究[J]. 塑性工程学报,2019,26(1):132-136. LIU He,HE Tiejun,WAN Li,et al. Study on creep age forming of double curvature 2219 aluminum alloy panel[J]. Journal of Plasticity Engineering,2019,26(1):132-136. [68] 安立辉,苑世剑. 2219铝合金薄壁曲面件拉形过程变形均匀性[J]. 材料工程,2020,48(4):123-130. AN Lihui,YUAN Shijian. Deformation uniformity of 2219 aluminum alloy thin-walled curved parts in stretch forming process[J]. Journal of Materials Engineering,2020,48(4):123-130. [69] PENG Jingwen,LI Weidong,Han Jinquan,et al. Kinetic locus design for longitudinal stretch forming of aircraft skin components[J]. International Journal of Advanced Manufacturing Technology,2016,86(9):3571-3582. [70] JENNIFER H. Engineers prepare to resume welding SLS test article[EB/OL]. [2017-08-07]. https://www.nasa.gov/exploration/systems/sls/multimedia/engineers-prepare-to--resume-welding-sls-test-article. [71] JENNIFER H. Construction' Fueling' up for SLS core stage hydrogen tank[EB/OL]. [2017-08-07]. https://www.nasa.gov/exploration/systems/sls/multimedia/construction-fue--ling-up-for-sls-core-stage-hydrogen-tank1.html. [72] JONES R E. Robotic manufacturing of 18-Ft (5.5m) diameter cryogenic fuel tank dome assemblies for the Nasa Ares I Rocket[EB/OL]. [2012-05-15]. https://ntrs.nasa.gov/citations/20120014602. [73] VOLZ M P,CHEN P S,Gorti S,et al,Development of aluminum-lithium 2195 Gores by the stretch forming process[EB/OL]. [2014-07-23]. https://ntrs.nasa.gov/citat--ions/20140011717. [74] Marshall Space Flight Center. Method of heat treating aluminum-lithium alloy to improve formability[EB/OL]. [2017-01-01]. https://www.techbriefs.com/component/content/article/tb/pub/techbriefs/manufacturing-prototyping/26-159. [75] MENG Xiangchen,HUANG Yongxian,CAO Jian,et al. Recent progress on control strategies for inherent issues in friction stir welding[J]. Progress in Materials Science,2020,115:1-74. [76] 安立辉,苑世剑. 2219铝合金薄壁曲面拉伸件的变形与强化规律[J]. 中国有色金属学报,2020,30(2):283-290. AN Lihui,YUAN Shijian. Deformation and strengthening law of 2219 aluminum alloy thin-walled curved surface tensile parts[J]. Chinese Journal of Nonferrous Metals,2020,30(2):283-290. [77] 李东,李平岐,王珏,等. “长征五号”系列运载火箭总体方案与关键技术[J]. 深空探测学报(中英文),2021,8(4):335-343. LI Dong,LI Pingqi,WANG Jue,et al. General scheme and key technologies of long march 5 launch vehicle[J]. Journal of Deep Space Exploration,2021,8(4):335-343. [78] 李东,王珏,陈士强. 长征五号运载火箭动力系统总体技术分析[J]. 推进技术,2021,42(7):1441-1448. LI Dong,WANG Jue,CHEN Shiqiang. Key technology analysis of CZ-5 launch vehicle propulsion system[J]. Journal of Propulsion Technology,2021,42(7):1441-1448. [79] 辛腾达,王华,崔村燕,等. 贮箱轻量化设计几何参数优化方法[J]. 西安交通大学学报,2019,53(7):153-159. XIN Tengda,WANG Hua,CUI Cunyan,et al. Geometric parameters optimization for tank lightweight design[J]. Journal of Xi’an Jiaotong University,2019,53(7):153-159. [80] 李卓. 忠旺铝业成功生产亚洲最宽超大规格铝合金板材[EB/OL]. [2016-07-27]. https://www.cnmn.com.cn/ShowNews1.aspx?id=353260. LI Zhuo. Zhongwang aluminum successfully produces Asia's widest ultra large aluminum alloy plate[EB/OL]. [2016-07-27]. https://www.cnmn.com.cn/ShowNews1.aspx?id=353260. [81] ZHANG Hongrui,ZHAN Mei,ZHENG Zebang,et al. Forming dependence on spin roller paths for thin-walled complex components from 2195 Al-Li alloy TWBs[J]. International Journal of Advanced Manufacturing Technology,2022,120:3113-3122. [82] 王忠孝. 金属爆炸加工技术在机械工程中的应用[J]. 机械,1996(4):40-46. WANG Zhongxiao. Application of metal explosive processing technology in Mechanical Engineering[J]. Machinery,1996(4):40-46. [83] 王忠孝. 金属爆炸加工技术的应用[J]. 中国机械工程,1996(1):68-70. WANG Zhongxiao. Application of metal explosive processing technology[J]. China Mechanical Engineering,1996(1):68-70. [84] MYNORS D J,ZHANG B. Applications and capabilities of explosive forming[J]. Journal of Materials Processing Tech,2002,125:1-25. [85] HOSSEIN M,GHOLAMHOSSEIN L,DARIUSH J. Experimental analysis and simulation of effective factors on explosive forming of spherical vessel using prefabricated four cones vessel structures[J]. Central European Journal of Engineering,2012,2(4):656-664. [86] 佟铮,李振声,何风曼. 大型超薄壁球壳无模爆炸成形[J]. 内蒙古工业大学学报,2000(1):44-47. TONG Zheng,LI Zhensheng,HE Fengman. Dieless explosive forming of large ultra-thin spherical shell[J]. Journal of Inner Mongolia University of Technology,2000(1):44-47. [87] HE Fengman,TONG Zheng,WANG Ning,et al. Explosive forming of thin-wall semi-spherical parts[J]. Materials Letters,2000,45(2):133-137. [88] 马安鹏,饶国宁,彭金华,等. 椭圆封头爆炸成形技术的试验研究[J]. 爆破器材,2013,42(1):43-46. MA Anpeng,RAO Guoning,PENG Jinhua,et al. Experimental study on explosion forming technology of elliptical head. [J]. Explosive Materials,2013,42(1):43-46. [89] 马安鹏. 椭圆封头爆炸成形的实验研究与数值模拟[D]. 南京:南京理工大学,2013. MA Anpeng. Experimental research and numerical simulation of explosion forming of elliptical head[D]. Nanjing:Nanjing University of Science and Technology,2013. [90] 刘伟,李能,周标,等. 复杂结构与高性能材料增材制造技术进展[J]. 机械工程学报,2019,55(20):128-151,159. LIU Wei,LI Neng,ZHOU Biao,et al. Progress in additive manufacturing on complex structures and high- performance materials[J]. Ordnance Material Science and Engineering,2019,55(20):128-151,159. [91] 3D PRINTING,EBAM used for large satellite structures[EB/OL]. [2021-02-25]. https://3dprintting.com/metal/ebam-used-for-large-satellite-structures/. [92] Investigation in space,Inside Relativity Space’s 3D-printing rocket' factory of the future'[EB/OL]. [2020-01-29]. https://www.cnbc.com/2020/10/07/inside-relativity-space-hq-3d-printer-rocketfactory-of-the-future.html. [93] 赵云峰,潘玲英. 航天先进结构复合材料及制造技术研究进展[J]. 宇航材料工艺,2021,51(4):29-36. ZHAO Yunfeng,PAN Lingying. Research progress of aerospace advanced polymer matrix composites and manufacturing technology[J]. Aerospace Materials & Technology,2021,51(4):29-36. [94] 湛利华,关成龙,黄诚,等. 航天低温复合材料贮箱国内外研究现状分析[J]. 航空制造技术,2019,62(16):79-87. ZHAN Lihua,GUAN Chenglong,HUANG Cheng,et al. Analysis of research status of composite cryotank for space[J]. Aeronautical Manufacturing Technology,2019,62(16):79-87. [95] 郭方亮,刘德博,邬桃,等. 低温贮箱用复合材料的研究进展[J]. 宇航材料工艺,2021,51(4):63-72. GUO Fangliang,LIU Debo,WU Tao,et al. Research progress of composites for cryotank[J]. Aerospace Materials & Technology,2021,51(4):63-72. [96] 武湛君,陈铎,李世超,等. 低温复合材料贮箱关键技术研究应用进展[J]. 航空制造技术,2021,64(11):14-23. WU Zhanjun,CHEN Duo,LI Shichao,et al. Research and application progress of key technologies for composites cryogenic tanks[J]. Aeronautical Manufacturing Technology,2021,64(11):14-23. [97] LIU Ni,MA Bin,LIU Feng,et al. Progress in research on composite cryogenic propellant tank for large aerospace vehicles[J]. Composites Part A Applied Science and Manufacturing,2021,143(14):106297. [98] MCCARVILLE D A,GUZMAN J C,DILLON A K,et al. Design,manufacture and test of cryotank components[J]. Comprehensive Composite Materials II,2018,3:153-79. [99] 李世超. 耐低温环境复合材料树脂基体的设计、制备及性能表征[D]. 大连:大连理工大学,2018. LI Shichao. Design,preparation and characterization of composite resin matrix for cryogenic environment[D]. Dalian:Dalian University of Technology,2018. [100] 张栋. 低温贮箱用碳纤维/环氧复合材料的抗渗漏性研究[D]. 哈尔滨:哈尔滨工业大学,2021. ZHANG Dong. Study on the anti-leakage of carbon fiber/epoxy composites for cryotank[D]. Harbin:Harbin Institute of Technology,2021. [101] 黄诚. 航天运载器低温复合材料贮箱结构设计方法研究[D]. 长沙:国防科学技术大学,2017. HUANG Cheng. Structural design of cryogenic composite tank for space vehicle [D]. Changsha:National University of Defense Technology,2017. [102] 王海露. 我国首个3.35米直径复合材料贮箱诞生[EB/OL]. [2021-01-26]. http://www.spacechina.Com/25/n2014789/n2414549/c3115619/content.html. WANG Hailu Aerospace news. China’s first prototype of 3.35m diameter composite tank was born[EB/OL]. [2021-01-26]. http://www.spacechina.com/n25/n2014789/n2414549/c3115619/content.html. [103] 赵盼. 火箭发动机氧化剂贮箱端盖结构预浸纤维铺放技术研究[D]. 西安:西北工业大学,2019. ZHAO Pan. Research on the prepreg fiber placement technology for fabricating the end cap structure of rocket engine oxidizer tank[D]. Xi’an:Northwestern Polytechnical University,2018. [104] 杨正伟,冯婧婧,张炜,等. 缠绕工艺关键参数对T800碳纤维复合材料壳体强度的影响[J]. 固体火箭技术,2022,45(3):416-423. YANG Zhengwei,FENG Jingjing,ZHANG Wei,et al. Influence of critical winding parameters on the strength of T800 carbon fiber composite case[J]. Journal of Solid Rocket Technology,2022,45(3):416-423. [105] 曾伟,肖军,李勇,等. 回转体自动铺丝轨迹规划与覆盖性分析[J]. 宇航学报,2010,31(1):239-243. ZENG Wei,XIAO Jun,LI Yong,et al. Research on path planning and coverability analysis of automatic fiber placement for structures in revolving shell[J]. Journal of Astronautics,2010,31(1):239-243 |
[1] | 张云舒, 吴斌涛, 赵昀, 丁东红, 潘增喜, 李会军. 电弧熔丝增材制造传热传质数值模拟研究现状与展望[J]. 机械工程学报, 2024, 60(8): 65-80. |
[2] | 李坤, 吉辰, 白生文, 蒋斌, 潘复生. 高性能镁合金电弧增材制造技术研究现状与展望[J]. 机械工程学报, 2024, 60(7): 289-311. |
[3] | 陈伟, 赵杰, 朱利斌, 曹海波. 增材制造低活化钢研究现状及展望[J]. 机械工程学报, 2024, 60(7): 312-333. |
[4] | 杜文博, 李晓亮, 李霞, 胡深恒, 朱胜. 搅拌摩擦沉积增材技术研究现状[J]. 机械工程学报, 2024, 60(7): 374-384. |
[5] | 郑洋, 赵梓昊, 刘伟, 余政哲, 牛伟, 雷贻文, 孙荣禄. 高性能镁合金增材制造技术研究进展[J]. 机械工程学报, 2024, 60(7): 385-400. |
[6] | 杜军, 王谦元, 何冀淼, 张永恒, 魏正英. TIG电弧辅助熔滴沉积增材制造中熔滴偏距对熔池形貌的影响机制研究[J]. 机械工程学报, 2024, 60(5): 219-230. |
[7] | 蒋周明矩, 熊异, 王柏村. 面向工业5.0的人机协作增材制造[J]. 机械工程学报, 2024, 60(3): 238-253. |
[8] | 石毅磊, 权银洙, 许海鹰, 王壮, 马文龙, 彭勇. 丝束同轴冷阴极电子枪电子束注腰位置影响因素分析[J]. 机械工程学报, 2024, 60(3): 328-336. |
[9] | 荣鹏, 成靖, 邓鸿文, 陶常安, 高川云, 冉先喆, 程序, 汤海波, 刘栋. 不同热处理对激光定向能量沉积制造TC4钛合金组织和拉伸性能的影响[J]. 机械工程学报, 2024, 60(20): 99-107. |
[10] | 陈鑫, 杨立飞, 于雪, 龚颖颖. GTN细观损伤模型的发展与应用综述[J]. 机械工程学报, 2024, 60(2): 62-80. |
[11] | 夏令伟, 谢亿民, 马国伟. 3D打印制造约束下的多孔结构与路径协同优化方法[J]. 机械工程学报, 2024, 60(19): 241-249. |
[12] | 万炜强, 韩光超, 王新云, 吕佩, 刘富初, 胡济涛, 柏伟, 徐林红. 超声辅助微塑性成形工艺研究进展[J]. 机械工程学报, 2024, 60(18): 89-115. |
[13] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[14] | 黄金杰, 赵欣. 3D打印中的分层计算研究进展[J]. 机械工程学报, 2024, 60(17): 235-262. |
[15] | 喻康, 傅建中, 贺永. 面向软组织缺损修复的组织工程支架研究进展[J]. 机械工程学报, 2024, 60(15): 255-271. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1089
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1006
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||