[1] 希弦. 微观航母之舰载机拦阻钩[J]. 兵器知识, 2015(3):72-75. XI Xian. Arresting hook of carrier-based aircraft on aircraft carrier[J]. Ordnance Knowledge, 2015(3):72-75. [2] LIN Yuanhua, LI Qiang, SUN Yongxing, et al. A repeated impact method and instrument to evaluate the impact fatigue property of drillpipe[J]. Journal of Materials Engineering and Performance, 2013, 22(4):1064-1071. [3] 刘正, 胡冶昌, 魏志芳. 复进簧冲击疲劳应力响应及其寿命预测[C]//成都:首届兵器工程大会, 2017:54-59. LIU Zheng, HU Yechang, WEI Zhifang. Fatigue stress response and life prediction of the recoil spring[C]//Chengdu:Proceedings of the First Ordnance Engineering Conference. 2017:54-59. [4] 李建阳, 王红岩, 洪煌杰, 等. 冲击载荷作用下的空降车累积损伤评估方法[J]. 计算机仿真, 2013, 30(11):137-142. LI Jianyang, WANG Hongyan, HONG Huangjie, et al. Studies on assessment method of cumulative damage for airborne vehicle under impact[J]. Computer Integrated Manufacturing Systems, 2013, 30(11):137-142. [5] 王晓军, 陈正馨, 许文良. 万能式断路器双刀轴承冲击疲劳寿命仿真与试验研究[J]. 电器与能效管理技术, 2019(7):66-77. WANG Xiaojun, CHEN Zhengxin, XU Wenliang. Simulation and experiment study of impact fatigue life of double-knife bearing for air circuit breaker[J]. Electrical & Energy Management Technology, 2019(7):66-77. [6] Altunlu A C, Lazoglu I, Oguz E, et al. An investigation on the impact fatigue characteristics of valve leaves for small hermetic reciprocating compressors in a new automated test system[J]. Fatigue & Fracture of Engineering Materials & Structures, 2012, 35:826-841. [7] 杨毅超, 张大可, 刘路. 某型汽车驱动盘轴向冲击疲劳计算分析[J]. 机械研究与应用, 2013(2):61-63. YANG Yichao, ZHANG Dake, LIU Lu. Fatigue analysis of flexplate under axial impact load based on ANSYS[J]. Mechanical Research & Application, 2013(2):61-63. [8] 刘小川, 王彬文, 白春玉, 等. 航空结构冲击动力学技术的发展与展望[J]. 航空科学技术, 2020(3):1-14. LIU Xiaochuan, WANG Binwen, BAI Chunyu, et al. Progress and prospect of aviation structure impact dynamics[J]. Aeronautical Science & Technology, 2020(3):1-14. [9] Radhakrishnan V M, Prasad R C. An impact fatigue testing machine[J]. International Journal of Fracture, 1974, 10(3):435-438. [10] Omotoyinbo J A, Oladele I O, Shokoya W. Effect of the degree of plastic deformation on the electrical resistance and thermal conductivity of Al-Mg-Si alloy[J]. Leonardo Electronic Journal of Practices & Technologies, 2014, 24:37-50. [11] Lee W, Lin C. Impact properties and microstructure evolution of 304L stainless steel[J]. Materials Science & Engineering A, 2001, 308:124-135. [12] Gurugubelli S N. The effect of ageing on impact toughness and microstructure of 2024 Al-Cu-Mg alloy[J]. World Acad. Sci., Eng. Technol, 2012, 6(2):608-610. [13] Cetinarslan C S. Effect of cold plastic deformation on electrical conductivity of various materials[J]. Materials & Design, 2009, 30(3):671-673. [14] 邹涵, 杨随先, 曾金晶, 等. 金属材料冲击疲劳损伤的涡流热成像检测[J]. 无损检测, 2016, 38(3):71-74. ZOU Han, YANG Suixian, ZENG Jinjing, et al. Impact fatigue damage detection of metallic material by using eddy current thermography[J]. Nondestructive Testing, 2016, 38(3):71-74. [15] SUN Q, LIU X R, LIANG K. Impact fatigue life prediction for notched specimen of steel aermet100 subjected to high strain rate loading[J]. International Journal of Applied Mechanics, 2018, 10:18500308. [16] Ermakov S S. Impact fatigue of chromium-manganese-silicon steel KhGS[J]. Metal Science and Heat Treatment of Metals, 1959, 1(2):39-42. [17] 刘国庆, 邹衍, 管小荣, 等. 新型卧式冲击疲劳试验机性能研究[J]. 南京理工大学学报, 2014, 38(3):361-365. LIU Guoqing, ZOU Yan, GUAN Xiaorong, et al. Performance of a new type of horizontal impact fatigue testing machine[J]. Journal of Nanjing University of Science and Technology, 2014, 38(3):361-365. [18] Tanaka T, Nakayama H, Kimura K. On the impact fatigue crack growth behaviour of metallic materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 1985, 8(1):13-22. [19] Tanaka T, Nakayama H, Mori T, et al. Development of a hydraulic spring-type high-speed impact fatigue testing machine and the experimental results[J]. JSME International Journal, 1988, 31(4):760-767. [20] 郭玉佩, 王彬文, 杨强, 等. 航空材料的冲击疲劳问题研究进展与展望[J]. 航空工程进展, 2020, 11(5):1-9. GUO Yupei, WANG Binwen, YANG Qiang, et al. Research progress and prospect of impact fatigue of aeronautical materials[J]. Advances in Aeronautical Science and Engineering, 2020, 11(5):1-9. [21] Iguchi H, Tanaka K, Taira S. Failure mechanisms in impact fatigue of metals[J]. Fatigue & Fracture of Engineering Materials & Structures, 1979, 2(2):165-176. [22] Tanaka T, Kinoshita K I, Nakayama H. Effect of loading time on high-cycle range impact fatigue strength and impact fatigue crack growth rate[J]. JSME International Journal, 1992, 35(1):108-116. [23] 蒋亚丽. 低速冲击荷载下低碳钢的损伤本构模型研究[D]. 烟台:烟台大学, 2017. JIANG Yali. Study on damage constitutive model of mild steel under low velocity impact laodings[D]. Yantai:Yantai University, 2017. [24] HU D Y, MENG K P, JIANG H L, et al. Strain rate dependent constitutive behavior investigation of AerMet 100 steel[J]. Materials & Design, 2015, 87:759-772. [25] 杨素淞, 白春玉, 杨强, 等. 金属材料与结构冲击疲劳问题研究综述[J]. 航空科学技术, 2021, 32(2):1-13. YANG Susong, BAI Chunyu, YANG Qiang, et al. Review on impact fatigue of metallic materials and structures[J]. Aeronautical Science & Technology, 2021, 32(2):1-13. [26] Lemaitre J, Chaboche J L. Aspect phénoménoloique de la rupture par endommagement[J]. Journal de Mécanique Appliquée, 1978(2):318-365. Lemaitre J, Chaboche J L. Phenomenological characteristics of damage and fracture[J]. Journal de Mécanique Appliquée, 1978(2):318-365. [27] Murakami S. Notion of continuum damage mechanics and its application to anisotropic creep damage theory[J]. J. Eng. Mater. Technol. Trans. ASME, 1983(105):99-105. [28] Krajcinovic D. Continuum damage mechanics[J]. Appl. Mech. Rev., 1984(37):1-6. [29] Lemaitre J, Desmorat R. Engineering damage mechanics:Ductile, creep, fatigue and brittle failures[M]. New York:Springer, 2005. [30] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21:541-548. [31] Singh N K, Cadoni E, Gupta K N, et al. Quasi-static and dynamic tensile behavior of CP800 steel[J]. Mech. Adv. Mater. Struct., 2014(21):531-537. [32] Cadoni E, Dotta M, Forni D, et al. Mechanical behaviour of quenched and self-tempered reinforcing steel in tension under high strain rate[J]. Mater. Des., 2013(49):657-666. [33] Singh N K, Cadoni E, Singha M K, et al. Dynamic tensile behavior of multi phase high yield strength steel[J]. Mater. Des., 2011(32):5091-5098. [34] WANG Xiaojia, MENG Qingchun, HU Weiping. Fatigue life prediction for butt-welded joints considering weld-induced residual stresses and initial damage, relaxation of residual stress, and elasto-plastic fatigue damage[J]. Fatigue Fract. Eng. Mater. Struct., 2019(42):1373-1386. [35] ZHANG Changming, MU Anle, WANG Yun, et al. Study on dynamic mechanical properties and constitutive model construction of TC18 titanium alloy[J]. Metals, 2020, 10(1):44. [36] Murakami S. Continuum damage mechanics[D]. Dordrecht:Springer, 2012. |