机械工程学报 ›› 2024, Vol. 60 ›› Issue (18): 89-115.doi: 10.3901/JME.2024.18.089
万炜强1, 韩光超1,2, 王新云3, 吕佩1, 刘富初1,2, 胡济涛1, 柏伟1,2, 徐林红1
收稿日期:
2023-11-08
修回日期:
2024-06-11
出版日期:
2024-09-20
发布日期:
2024-11-15
作者简介:
万炜强,男,1993年出生,博士研究生。主要研究方向为超声辅助微挤压成形加工工艺及机理。E-mail:wanweiqiang@cug.edu.cn基金资助:
WAN Weiqiang1, HAN Guangchao1,2, WANG Xinyun3, Lü Pei1, LIU Fuchu1,2, HU Jitao1, BAI Wei1,2, XU Linhong1
Received:
2023-11-08
Revised:
2024-06-11
Online:
2024-09-20
Published:
2024-11-15
摘要: 随着制造技术的不断发展,产品趋于小型化和精密化。金属微塑性成形技术具有低成本、高效率和高精度优势,已被广泛应用在微机电系统、航空航天、生物医疗和军事等重要领域。其中,超声辅助微塑性成形工艺具有降低成形载荷,减少工具/模具型腔-试样间界面摩擦,改善成形表面质量,提高成形极限和均匀性等诸多优势,能有效解决尺寸效应导致的成形缺陷,已成为金属微塑性成形技术的重要应用发展方向。在综述超声辅助微塑性成形工艺、机理及理论模型研究现状的基础上,特别侧重分析不同超声振动模式(工具振动、工件振动、工具-工件复合振动)对微塑性成形过程中工件成形质量和力学性能的影响规律。展望了超声辅助微塑性成形技术未来的发展趋势。超声作用与尺寸效应耦合机制揭示及其量化分析,多能场和复合工艺协同应用研究等将成为微塑性成形技术发展的新方向。
中图分类号:
万炜强, 韩光超, 王新云, 吕佩, 刘富初, 胡济涛, 柏伟, 徐林红. 超声辅助微塑性成形工艺研究进展[J]. 机械工程学报, 2024, 60(18): 89-115.
WAN Weiqiang, HAN Guangchao, WANG Xinyun, Lü Pei, LIU Fuchu, HU Jitao, BAI Wei, XU Linhong. Research Progress of Ultrasonic Assisted Micro-plastic Forming Process[J]. Journal of Mechanical Engineering, 2024, 60(18): 89-115.
[1] XU J,WANG X,WANG C,et al. A review on micro/nanoforming to fabricate 3D metallic structures[J]. Advanced Materials,2021,33(6):202000893. [2] CHAN W L,FU M W,LU J. Experimental and simulation study of deformation behavior in micro- compound extrusion process[J]. Materials and Design,2011,32(2):525-534. [3] HUANG Y M,WU Y S,HUANG J Y. The influence of ultrasonic vibration-assisted micro-deep drawing process[J]. The International Journal of Advanced Manufacturing Technology,2014,71(5):1455-1461. [4] FU M W,CHAN W L. A review on the state-of-the-art microforming technologies[J]. The International Journal of Advanced Manufacturing Technology,2013,67(9):2411-2437. [5] FU M W,CHAN W L. Micro-scaled progressive forming of bulk micropart via directly using sheet metals[J]. Materials & Design,2013,49(8):774-783. [6] FU M W,WANG J L. Size effects in multi-scale materials processing and manufacturing[J]. International Journal of Machine Tools and Manufacture,2021,167(5):103755. [7] RAULEA L V,GOVAERT L E,BAAIJENS F P T. Grain and specimen size effects in processing metal sheets[C]//Advanced Technology of Plasticity 1999:Proceedings of the 6th International Conference on Technology of Plasticity,Nuremberg,September 19-24,1999. Vol. 2. Springer,1999:939-944. [8] PRADEEP RAJA C,RAMESH T. Influence of size effects and its key issues during microforming and its associated processes:A review[J]. Engineering Science and Technology,an International Journal,2021,24(2):556-570. [9] 曹伯楠,孟宝,赵越超,等. 特种能场辅助微塑性成形技术研究及应用[J]. 精密成形工程,2019,11(3):14-27. CAO Bonan,MENG Bao,ZHAO Yuechao,et al. Research and application of energy field assisted microforming technology[J]. Journal of Netshape Forming Engineering,2019,11(3):14-27. [10] SHAO G,LI H,ZHAN M. A Review on ultrasonic- assisted forming:Mechanism,model,and process[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-24. [11] 胡俊,路腾腾,申昱. 超声辅助纯钛拉伸试验研究[J]. 精密成形工程,2018,10(4):75-78. HU Jun,LU Tengteng,SHEN Yu. Ultrasonic vibration tensile test on pure titanium[J]. Journal of Netshape Forming Engineering,2018,10(4):75-78. [12] WANG C,ZHANG W,CHENG L,et al. Investigation on microsheet metal deformation behaviors in ultrasonic- vibration-assisted uniaxial tension with aluminum alloy 5052[J]. Materials,2020,13(3):637. [13] WANG X,WANG C,LIU Y,et al. An energy based modeling for the acoustic softening effect on the Hall- Petch behavior of pure titanium in ultrasonic vibration assisted micro-tension[J]. International Journal of Plasticity,2021,136(1):102879. [14] WANG C,LIU H,WANG C,et al. Interactive effects of height-to-diameter ratio and strain on tribological behavior in micro compression of pure nickel cylinder[J]. International Journal of Mechanical Sciences,2018,144(8):452-460. [15] MA J,ZHAO X,GUO Y,et al. Mechanical behavior and material property of low-carbon steel undergoing low- frequency vibration-assisted upsetting[J]. Journal of Materials Research and Technology,2022,16(1-2):1846-1855. [16] WANG X,QI Z,CHEN W. Investigation of Ti-45Nb alloy’s mechanical and microscopic behaviors under transverse ultrasonic vibration-assisted compression[J]. Materials Science and Engineering:A,2022,832(1):142401. [17] LOU Y,HE J S,CHEN H,et al. Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion[J]. The International Journal of Advanced Manufacturing Technology,2017,89(5):2421-2433. [18] BUNGET C,NGAILE G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics,2011,51(5):606-616. [19] HAN G,WAN W,ZHANG Z,et al. Experimental investigation into effects of different ultrasonic vibration modes in micro-extrusion process[J]. Journal of Manufacturing Processes,2021,67(4):427-437. [20] MALEKIPOUR E,SHARIFI E,MAJD N S,et al. Observation on the behavior of ultrasonic micro-hammer and its effects on the deep drawing process:Numerical simulation and experimental study[J]. Ultrasonics,2022,119(2):106566. [21] ZHAO J,WANG T,JIA F,et al. Experimental investigation on micro deep drawing of stainless steel foils with different microstructural characteristics[J]. Chinese Journal of Mechanical Engineering,2021,34(1):1-11. [22] CAO M Y,LI J C,YUAN Y N,et al. Flexible die drawing of magnesium alloy sheet by superimposing ultrasonic vibration[J]. Transactions of Nonferrous Metals Society of China,2017,27(1):163-171. [23] CHENG Z,LI Y,LI J,et al. Ultrasonic assisted incremental sheet forming:Constitutive modeling and deformation analysis[J]. Journal of Materials Processing Technology,2022,299(1):117365. [24] 陈晓晓. 铝合金薄板超声辅助渐进成形塑性软化机理及成形性能探究[D]. 济南:山东大学,2019. CHEN Xiaoxiao. Study on plastic softening mechanism and forming properties of ultrasonic-assisted incremental sheet forming of aluminum alloy sheets[D]. Jinan:Shandong University,2019. [25] LI Y,CHEN X,SUN J,et al. Effects of ultrasonic vibration on deformation mechanism of incremental point-forming process[J]. Procedia Engineering,2017,207(11):777-782. [26] WU B,LU J,WU Z,et al. Mechanical properties and microstructure of AZ31 magnesium alloy processed by intermittent ultrasonic-assisted equal channel angular pressing[J]. Journal of Materials Engineering and Performance,2021,30(1):346-356. [27] DJAVANROODI F,AHMADIAN H,KOOHKAN K,et al. Ultrasonic assisted-ECAP[J]. Ultrasonics,2013,53(6):1089-1096. [28] AMINI S,HOSSEINPOUR GOLLO A,PAKTINAT H. An investigation of conventional and ultrasonic-assisted incremental forming of annealed AA1050 sheet[J]. The International Journal of Advanced Manufacturing Technology,2017,90(5):1569-1578. [29] LI M,ZHANG Q,HAN B,et al. Investigation on microstructure and properties of AlxCoCrFeMnNi high entropy alloys by ultrasonic impact treatment[J]. Journal of Alloys and Compounds,2020,816(3):152626. [30] YAO Z,KIM G Y,FAIDLEY L,et al. Effects of superimposed high-frequency vibration on deformation of aluminum in micro/meso-scale upsetting[J]. Journal of Materials Processing Technology,2012,212(3):640-646. [31] LIN J,LI J,LIU T,et al. Evaluation of friction reduction and frictionless stress in ultrasonic vibration forming process[J]. Journal of Materials Processing Technology,2021,288(2):116881. [32] ZHAI J,GUAN Y,LI Y,et al. The surface effect of ultrasonic vibration in double cup extrusion test[J]. Journal of Materials Processing Technology,2022,299(6):117344. [33] HUANG Y M,CHANG Y M. The reducing of springback angle on micro-bending process with ultrasonic assistance[J]. Journal of the Chinese Society of Mechanical Engineers,Series C:Transactions of the Chinese Society of Mechanical Engineers,2014,35(4):321-325. [34] 李凯辉. 金属薄板超声柔性冲头微冲压成形方法应用与质量评估[D]. 深圳:深圳大学,2015. LI Kaihui. Quality evaluation and application of flexible- punch micro-ultrasonic sheet-metal forming[D]. Shenzhen:Shenzhen University,2015. [35] 王良江. 聚合物微结构超声波压印工艺研究[D]. 大连:大连理工大学,2012. WANG Liangjiang. Study of ultrasonic imprinting for polymer microstructure[D]. Dalian:Dalian University of Technology,2012. [36] 刘艳雄. 超声波辅助大塑性变形细化材料晶粒研究[D]. 武汉:武汉理工大学,2012. LIU yanxiong. Study on grain refinement of materials by ultrasonic assisted large plastic deformation[D]. Wuhan:Wuhan University of Technology,2012. [37] 姚喆赫. 超声能场在金属微/介观成形中的作用理论及实验研究[D]. 杭州:浙江大学,2016. YAO Zhehe. Theories and experimental studies on effects of ultrasonic energy field in micro/meso metal forming[D]. Hangzhou:Zhejiang University,2016. [38] BLAHA F,LANGENECKER B. Tensile deformation of zinc crystal under ultrasonic vibration[J]. Naturwissenschaften,1955,42(556):1-10. [39] YAO Z,KIM G Y,WANG Z,et al. Acoustic softening and residual hardening in aluminum:Modeling and experiments[J]. International Journal of Plasticity,2012,39(12):75-87. [40] NEVILL G E. Effect of vibrations on the yield strength of a low carbon steel[J]. Materials Science,Engineering,Physics,1957:57:751-758. [41] HU J,SHIMIZU T,YANG M. Investigation on ultrasonic volume effects:Stress superposition,acoustic softening and dynamic impact[J]. Ultrasonics sonochemistry,2018,48(11):240-248. [42] YAO Z,KIM G Y,FAIDLEY L,et al. Micro pin extrusion of metallic materials assisted by ultrasonic vibration[C]//International Manufacturing Science and Engineering Conference:Vol. 49460. 2010:647-651. [43] WANG C J,LIU Y,GUO B,et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil:Experiments and modeling[J]. Materials & Design,2016,112(12):246-253. [44] HUANG Z,LUCAS M,ADAMS M J. Influence of ultrasonics on upsetting of a model paste[J]. Ultrasonics,2002,40(1-8):43-48. [45] ZHUANG X C,WANG J P,ZHENG H,et al. Forming mechanism of ultrasonic vibration assisted compression[J]. Transactions of Nonferrous Metals Society of China,2015,25(7):2352-2360. [46] DAUD Y,LUCAS M,HUANG Z. Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium[J]. Journal of Materials Processing Technology,2007,186(1-3):179-190. [47] LIU T,LIN J,GUAN Y,et al. Effects of ultrasonic vibration on the compression of pure titanium[J]. Ultrasonics,2018,89(4):26-33. [48] TIEJUN G,XIAOJUN L,KUN Y,et al. Effects of ultrasonic vibration on tensile properties of TC1 titanium alloy sheet[J]. Rare Metal Mat. Eng.,2019,48(1):286-292. [49] KANG J,LIU X,XU M. Plastic deformation of pure copper in ultrasonic assisted micro-tensile test[J]. Materials Science and Engineering:A,2020,785(5):139364. [50] SIU K W,NGAN A H W,JONES I P. New insight on acoustoplasticity-ultrasonic irradiation enhances subgrain formation during deformation[J]. International Journal of Plasticity,2011,27(5):788-800. [51] DUTTA R K,PETROV R H,DELHEZ R,et al. The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel[J]. Acta Materialia,2013,61(5):1592-1602. [52] JIANG S,YANG T,SUN H. Influence of ultrasonic vibration on tensile properties and dislocation distribution of titanium foil[J]. Journal of Materials Engineering,2019,47(2):84-89. [53] DESHPANDE A,HSU K. Acoustic energy enabled dynamic recovery in aluminium and its effects on stress evolution and post-deformation microstructure[J]. Materials Science and Engineering:A,2018,711(1):62-68. [54] DUTTA R K,PETROV R H,HERMANS M J M,et al. Accommodation of plastic deformation by ultrasound- induced grain rotation[J]. Metallurgical and Materials Transactions A,2015,46(8):3414-3422. [55] MAO Q,COUTRIS N,RACK H,et al. Investigating ultrasound-induced acoustic softening in aluminum and its alloys[J]. Ultrasonics,2020,102(3):106005. [56] MENG B,CAO B N,WAN M,et al. Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet[J]. International Journal of Mechanical Sciences,2019,157(7):609-618. [57] ZHOU H,CUI H,QIN Q H,et al. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing[J]. Materials Science and Engineering A,2017,682(6):376-388. [58] HUANG H,PEQUEGNAT A,CHANG B H,et al. Influence of superimposed ultrasound on deformability of Cu[J]. Journal of Applied Physics,2009,106(11):113514. [59] ZHOU H,CUI H,QIN Q H,et al. A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing[J]. Materials Science and Engineering:A,2017,682(1):376-388. [60] FARTASHVAND V,ABDULLAH A,VANINI S A S. Investigation of Ti-6Al-4V alloy acoustic softening[J]. Ultrasonics Sonochemistry,2017,38(9):744-749. [61] LIU Y,WANG C,BI R. Acoustic residual softening and microstructure evolution of T2 copper foil in ultrasonic vibration assisted micro-tension[J]. Materials Science and Engineering:A,2022,841(4):143044. [62] HUNG J C,TSAI Y C. Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass[J]. Materials Science and Engineering A,2013,580(9):125-132. [63] MENG B,CAO B N,WAN M,et al. Ultrasonic- assisted microforming of superalloy capillary:Modeling and experimental investigation[J]. Journal of Manufacturing Processes,2020,57(9):589-599. [64] AHMADI F,FARZIN M,MANDEGARI M. Effect of grain size on ultrasonic softening of pure aluminum[J]. Ultrasonics,2015,63(12):111-117. [65] SHIMIZU T,KOSUGE S,YANG M. Grain size effect on transferability in micro-coining process assisted by ultrasonic vibration[J]. Manufacturing Review,2015,2(4):5. [66] ZHAI J,GUAN Y,WANG W,et al. Studies on ultrasonic vibration-assisted coining of micro-cylinder[J]. International Journal of Advanced Manufacturing Technology,2019,100(5-8):2031-2044. [67] LOU Y,HE J S,CHEN H,et al. Effects of vibration amplitude and relative grain size on the rheological behavior of copper during ultrasonic-assisted microextrusion[J]. International Journal of Advanced Manufacturing Technology,2017,89(5-8):2421-2433. [68] BAI Y,YANG M. The influence of superimposed ultrasonic vibration on surface asperities deformation[J]. Journal of Materials Processing Technology,2016,229(3):367-374. [69] KUMAR V C,HUTCHINGS I M. Reduction of the sliding friction of metals by the application of longitudinal or transverse ultrasonic vibration[J]. Tribology International,2004,37(10):833-840. [70] SIEGERT K,ULMER J. Reduction of sliding friction by ultrasonic waves[J]. Production Engineering,1998,5(1):9-12. [71] CAO M Y,LI J C,LIU Y Y,et al. Frictional characteristics of sheet metals with superimposed ultrasonic vibrations[J]. Journal of Central South University,2018,25(8):1879-1887. [72] SOFUOGLU H,RASTY J. On the measurement of friction coefficient utilizing the ring compression test[J]. Tribology International,1999,32(6):327-335. [73] HUNG J C,TSAI Y C,HUNG C. Frictional effect of ultrasonic-vibration on upsetting[J]. Ultrasonics,2007,46(3):277-284. [74] WANG C,LIU H,WANG C,et al. Interactive effects of height-to-diameter ratio and strain on tribological behavior in micro compression of pure nickel cylinder[J]. International Journal of Mechanical Sciences,2018,144(6):452-460. [75] XIE Z,GUAN Y,ZHU L,et al. Investigations on the surface effect of ultrasonic vibration-assisted 6063 aluminum alloy ring upsetting[J]. The International Journal of Advanced Manufacturing Technology,2018,96(9):4407-4421. [76] CHANG C C,HUANG C K. Effects of surface roughness on tribological characteristics in micro double cup extrusion of aluminum[J]. Key Engineering Materials,2010,419-420(10):5-8. [77] YAO Z,KIM G Y,FAIDLEY L,et al. Experimental study of high-frequency vibration assisted micro/mesoscale forming of metallic materials[J]. Journal of Manufacturing Science and Engineering,Transactions of the ASME,2011,133(6):061009. [78] SHAHROKH R,GHAEI A,FARZIN M,et al. Experimental and numerical investigation of ultrasonically assisted micro-ring compression test[J]. International Journal of Advanced Manufacturing Technology,2018,95(9-12):3487-3495. [79] ZHA C,ZHA S. Experimental investigation of friction based on ultrasonic vibration[J]. UPB Scientific Bulletin,Series D:Mechanical Engineering,2020,82(4):17-28. [80] BUSCHHAUSEN A,WEINMANN K,LEE J Y,et al. Evaluation of lubrication and friction in cold forging using a double backward-extrusion process[J]. Journal of Materials Processing Tech.,1992,33(1-2):95-108. [81] HUNG J C,HUANG C C. Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests[J]. International Journal of Precision Engineering and Manufacturing,2012,13(12):2103-2108. [82] WAN W,CHENG J,XU L,et al. Investigation on friction characteristics of micro double cup extrusion assisted by different ultrasonic vibration modes[J]. The International Journal of Advanced Manufacturing Technology,2022,123(7):2549-2560. [83] HUNG J C,HUANG C C. Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests[J]. International Journal of Precision Engineering and Manufacturing,2012,13(12):2103-2108. [84] XU L,LEI Y,ZHANG H,et al. Research on the micro- extrusion process of copper T2 with different ultrasonic vibration modes[J]. Metals,2019,9(11):1209. [85] HU J,SHIMIZU T,YOSHINO T,et al. Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests[J]. Journal of Materials Processing Technology,2018,258(8):144-154. [86] RUSINKO A. Non-classical problems of irreversible deformation in terms of the synthetic theory[J]. Acta Polytechnica Hungarica,2010,7(3):25-62. [87] RUSINKO A. Analytical description of ultrasonic hardening and softening[J]. Ultrasonics,2011,51(6):709-714. [88] XIE Z,GUAN Y,LIN J,et al. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model[J]. Ultrasonics,2019,96(7):1-9. [89] LIN J,LI J,LIU T,et al. Investigation on ultrasonic vibration effects on plastic flow behavior of pure titanium:Constitutive modeling[J]. Journal of Materials Research and Technology,2020,9(3):4978-4993. [90] SIDDIQ A,EL SAYED T. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM[J]. Materials Letters,2011,65(2):356-359. [91] SIDDIQ A,EL SAYED T. A thermomechanical crystal plasticity constitutive model for ultrasonic consolidation[J]. Computational Materials Science,2012,51(1):241-251. [92] SEDAGHAT H,XU W,ZHANG L. Ultrasonic vibration-assisted metal forming:Constitutive modelling of acoustoplasticity and applications[J]. Journal of Materials Processing Technology,2019,265(2):122-129. [93] KUMARI M,RAY K K. Effect of the mode of deformation on activation volume of a material[J]. Materials Science and Engineering:A,2016,650(1):335-344. [94] PRABHAKAR A,VERMA G C,KRISHNASAMY H,et al. Dislocation density based constitutive model for ultrasonic assisted deformation[J]. Mechanics Research Communications,2017,85(10):76-80. [95] HALL E O. The deformation and ageing of mild steel:III discussion of results[J]. Proceedings of the Physical Society. Section B,1951,64(9):747. [96] PETCH N J. The cleavage strength of polycrystals[J]. Journal of the Iron and Steel Institute,1953,174:25-28. [97] BATA V,PERELOMA E V. An alternative physical explanation of the Hall-Petch relation[J]. Acta Materialia,2004,52(3):657-665. [98] LI Y,CHENG Z,CHEN X,et al. Constitutive modeling and deformation analysis for the ultrasonic- assisted incremental forming process[J]. The International Journal of Advanced Manufacturing Technology,2019,104(5):2287-2299. [99] STORCK H,LITTMANN W,WALLASCHEK J,et al. The effect of friction reduction in presence of ultrasonic vibrations and its relevance to travelling wave ultrasonic motors[J]. Ultrasonics,2002,40(1-8):379-383. [100] TEIDELT E,STARCEVIC J,POPOV V L. Influence of ultrasonic oscillation on static and sliding friction[J]. Tribology Letters,2012,48(1):51-62. [101] DUPONT P,ARMSTRONG B,HAYWARD V. Elasto-plastic friction model:contact compliance and stiction[C]//Proceedings of the 2000 American Control Conference. ACC (IEEE cat. no. 00CH36334):Vol. 2. IEEE,2000:1072-1077. [102] DAHL P R. Solid friction damping of mechanical vibrations[J]. AIAA Journal,1976,14(12):1675-1682. [103] GUTOWSKI P,LEUS M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion[J]. Tribology International,2012,55(11):108-118. [104] GUTOWSKI P,LEUS M. Computational model for friction force estimation in sliding motion at transverse tangential vibrations of elastic contact support[J]. Tribology International,2015,90(10):455-462. [105] TSAI C C,TSENG C H. The effect of friction reduction in the presence of in-plane vibrations[J]. Archive of Applied Mechanics,2006,75(2):164-176. [106] UDAYKANT JADAV P,AMALI R,ADETORO O B. Analytical friction model for sliding bodies with coupled longitudinal and transverse vibration[J]. Tribology International,2018,126(8):240-248. [107] DAHL P R. A solid friction model[R]. Aerospace Corp El Segundo Ca,1968. [108] BAI Y,YANG M. Investigation on mechanism of metal foil surface finishing with vibration-assisted micro-forging[J]. Journal of Materials Processing Technology,2013,213(3):330-336. [109] ZHOU H,CUI H,QIN Q H. Influence of ultrasonic vibration on the plasticity of metals during compression process[J]. Journal of Materials Processing Technology,2018,251(1):146-159. [110] HAN G,LI K,PENG Z,et al. A new porous block sonotrode for ultrasonic assisted micro plastic forming[J]. The International Journal of Advanced Manufacturing Technology,2017,89(5):2193-2202. [111] 彭卓,韩光超,李凯,等. 超声辅助微挤压成形系统设计[J]. 振动与冲击,2017,36(15):259-264. PENG Zhuo,HAN Guangchao,LI Kai,et al. Design of an ultrasonic-assisted micro extrusion forming system[J]. Journal of Vibration and Shock,2017,36(15):259-264. [112] ZHAO Y,ZHAI J,GUAN Y,et al. Molecular dynamics study of acoustic softening effect in ultrasonic vibration assisted tension of monocrystalline/ polycrystalline coppers[J]. Journal of Materials Processing Technology,2022,307(9):117666. [113] YIN Z,YANG M. Investigation on deformation behavior in the surface of metal foil with ultrasonic vibration-assisted micro-forging[J]. Materials,2022,15(5):1907. [114] LOU Y,LIU X. Ultrasonic flexible microextrusion forming of ZK60 Mg alloy at room temperature[C]//IOP Conference Series:Materials Science and Engineering:Vol. 490. IOP Publishing,2019:52007. [115] WANG C J,LIU Y,ZHANG B,et al. Development of ultrasonic vibration assisted uniaxial tension device and utilization in evaluation of micro tension deformation behavior of copper foil[J]. Ferroelectrics,2017,521(1):53-60. [116] WANG C,LIU Y,SHAN D,et al. Investigations on mechanical properties of copper foil under ultrasonic vibration considering size effect[J]. Procedia Engineering,2017,207(11):1057-1062. [117] XIE Z D,GUAN Y J,YU X H,et al. Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation[J]. Journal of Central South University,2018,25(7):1545-1559. [118] SIDDIQ A,EL SAYED T. Ultrasonic-assisted manufacturing processes:Variational model and numerical simulations[J]. Ultrasonics,2012,52(4):521-529. [119] 路腾腾,申昱,于沪平,等. 超声振动对纯钛TA1微圆柱体压缩过程的影响[J]. 塑性工程学报,2016,23(6):14-18. LU Tengteng,SHEN Yu,YU Huping,et al. Influence of ultrasonic vibration on pure titanium TA1 micro cylinder compression[J]. Journal of Plasticity Engineering,2016,23(6):14-18. [120] 魏丽. 超声振动对AZ31镁合金室温塑性变形过程的影响[D]. 重庆:重庆大学,2010. WEI Li. Effect of ultrasonic vibration on plastic deformation process of AZ31 magnesium alloy at room temperature[D]. Chongqing:Chongqing University,2010. [121] HUNG J C,LIN C C. Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting[J]. Materials & Design,2013,45(3):412-420. [122] HUNG J C,CHIANG M C. The influence of ultrasonic-vibration on double backward-extrusion of aluminum alloy[C]//Proceedings of the World Congress on Engineering:Vol. 2. Citeseer,2009:1-3. [123] 龙敏. 常温下超声波微挤压成形对ZK60镁合金流变行为的影响[D]. 深圳:深圳大学,2015. LONG Min. Effect of ultrasonic micro-extrusion forming on ZK60 Mg alloy rheological behavior at room temperature[D]. Shenzhen:Shenzhen University,2015. [124] 陈恒. 超声波辅助微挤压成形性能与微观组织演变规律[D]. 深圳:深圳大学,2015. CHEN Heng. Deformation properties and microstructure evolution during ultrasonic vibration-assisted microextrusion[D]. Shenzhen:Shenzhen University,2015. [125] LUO F,WANG B,LI Z W,et al. Time factors and optimal process parameters for ultrasonic microchannel formation in thin sheet metals[J]. International Journal of Advanced Manufacturing Technology,2017,89(1-4):255-263. [126] LIU C T,XU X G,ZHANG D,et al. Effect of ultrasonic vibration on forming force and forming quality in micro-punching with a flexible punch[J]. Scientific Reports,2022,12(1):16851. [127] YANG R X,WANG B,XU B,et al. Influence of ultrasound on forming force in thin sheetmetal microforming using molten plastic as flexible punch[J]. Materials & Design,2021,212(12):110239. [128] WANG C,CHENG L,LIU Y,et al. Ultrasonic flexible bulging process of spherical caps array as surface texturing using aluminum alloy 5052 ultra-thin sheet[J]. Journal of Materials Processing Technology,2020,284(10):116725. [129] ZHA C,CHEN W. Theories and experiments on effects of acoustic energy field in micro-square cup drawing[J]. The International Journal of Advanced Manufacturing Technology,2019,104(9):4791-4802. [130] ZHA C,ZHA S. Experimental study on influence of ultrasonic vibration on forming limit[J]. Mechanics & Industry,2022,23(7):14. [131] WANG C J,LIU Y,GUO B,et al. Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil:Experiments and modeling[J]. Materials and Design,2016,112(12):246-253. [132] WEN T,WEI L,CHEN X,et al. Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process[J]. International Journal of Minerals,Metallurgy,and Materials,2011,18(1):70-76. [133] 张曼曼. 超声振动辅助TA2纯钛箔板塑性变形行为与微冲裁机理研究[D]. 哈尔滨:哈尔滨工业大学,2015. ZHANG Manman. Investigation on ultrasonic vibration- assisted plastic deformation behaviors and micro- blanking mechanism using TA2 pure titanium foil[D]. Harbin:Harbin Institute of Technology,2015. [134] 顾晓猛. 金属薄板超声微拉伸性能测试[D]. 深圳:深圳大学,2015. GU Xiaomeng. The performance testing of sheet metal ultrasound micro-tensile[D]. Shenzhen:Shenzhen University,2015. [135] DAUD Y,LUCAS M,HUANG Z. Superimposed ultrasonic oscillations in compression tests of aluminium[J]. Ultrasonics,2006,44(12):511-515. [136] 庞思勤,马春峰,周天丰,等. 超声振动辅助微镦粗仿真及试验研究[J]. 哈尔滨工业大学学报,2021,53(1):70-77. PANG Siqing,MA Chunfeng,ZHOU Tianfeng,et al. Simulation and experiment study on ultrasonic vibration assisted micro upsetting[J]. Journal of Harbin Institute of Technology,2021,53(1):70-77. [137] 王志海. 超声辅助微塑性成形过程超声尺度效应研究[D]. 杭州:杭州电子科技大学,2017. WANG Zhihai. Study on the ultrasonic scale effect of ultrasonic assisted micro plastic forming[D]. Hangzhou:Hanzhou Electronic Science and Technology University,2017. [138] BUNGET C,NGAILE G. Influence of ultrasonic vibration on micro-extrusion[J]. Ultrasonics,2011,51(5):606- 616. [139] GANIEV M M,VAGAPOV I K,GANIEV I M. Ultrasonic micro-forging by two coaxial longitudinal waveguides with a fixed gap:model and application[J]. Journal of Materials Processing Technology,2021,288(2):116905. [140] ABRAMOV O V. Ultrasound in liquid & solid metals[M]. Boca Raton:CRC Press,1994. [141] 陈长新,韩光超,彭卓,等. 超声辅助微挤压成形数值模拟研究[C]//2016年全国超声加工技术研讨会论文集,2016:132-136. CHEN Changxin,HAN Guangchao,PENG Zhuo,et al. Numerical simulation research of ultrasonic-assisted micro-extraction forming[C]//Proceedings of the 2016 National Symposium on Ultrasonic Machining Technology,2016:132-136. [142] 韩光超,刘军,温晓宁,等. 基于不同振动模式的超声辅助拉深精密成形工艺[J]. 锻压技术,2021,46(9):118-123. HAN Guangchao,LIU Jun,WEN Xiaoning,et al. Precision forming process by ultrasonic assisted deep drawing based on different vibration modes[J]. Forging & StampingTechnology,2021,46(9):118-123. [143] 韩光超,石秋雨,沈豫楚,等. 多模式超声振动等径角挤压超细晶纯铝成形机理研究[J]. 机械工程学报,2021,57(23):241-251. HAN Guangchao,SHI Qiuyu,SHEN Yuchu,et al. Research on the forming mechanism of multi-mode ultrasonic assisted equal channel angular pressing for ultrafine grained 1070 pure aluminum[J]. Journal of Mechanical Engineering,2021,57(23):241-251. |
[1] | 苏志朋, 梁志强, 李娟, 王飞, 魏正义, 刘月红, 金惟薇, 马悦, 殷振, 王西彬. 钛合金微槽超声螺线辅助铣磨加工试验研究[J]. 机械工程学报, 2024, 60(9): 5-12. |
[2] | 董志刚, 王中旺, 冉乙川, 鲍岩, 康仁科. 碳纤维增强陶瓷基复合材料超声振动辅助铣削加工技术的研究进展[J]. 机械工程学报, 2024, 60(9): 26-56. |
[3] | 梁奉爽, 吴明阳, 刘立飞. 基于材料冲击特性的碳化硅超声磨削机理及亚表面损伤特征研究[J]. 机械工程学报, 2024, 60(9): 75-85. |
[4] | 陈守峰, 王成勇, 李伟秋, 丁峰, 卢耀安, 周玉海. 超声振动铣削加工石墨材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 86-96. |
[5] | 周京国, 张宇航, 隋天一, 行登海, 董宝昆, 付清宇, 付俊帆, 林彬. 分离-接触特征对钛合金超声振动辅助铣削加工特性影响规律研究[J]. 机械工程学报, 2024, 60(9): 97-113. |
[6] | 吴淑晶, 王大中, 谷顾全, 黄帅, 董国军, 郭国强, 安庆龙, 李长河. 多种能场高性能加工复杂曲面关键技术研究进展[J]. 机械工程学报, 2024, 60(9): 152-167. |
[7] | 张园, 徐念伟, 鲍岩, 董志刚, 韩松, 郭东明, 康仁科. 轴向超声辅助端面磨削金属表面形貌及粗糙度预测[J]. 机械工程学报, 2023, 59(5): 307-316. |
[8] | 田少杰, 刘雪峰, 王文静, 崔庆贺, 郝健博. 超声振动系统的研究现状及其在塑性成形领域的应用进展[J]. 机械工程学报, 2023, 59(20): 198-214. |
[9] | 丁文锋, 曹洋, 赵彪, 徐九华. 超声振动辅助磨削加工技术及装备研究的现状与展望[J]. 机械工程学报, 2022, 58(9): 244-269. |
[10] | 袁松梅, 邵梦博, 李麒麟, 高晓星, 陈博川. 碳化钛颗粒增强钢基复合材料超声振动辅助划痕仿真及试验研究[J]. 机械工程学报, 2022, 58(7): 246-257. |
[11] | 林波, 范滔, 张杨, 赵愈亮, 张卫文, 王莹. 功率超声与挤压铸造耦合工艺对Al-5.0Cu合金凝固组织影响的数值模拟与试验研究[J]. 机械工程学报, 2022, 58(10): 87-94. |
[12] | 李华, 任坤, 殷振, 戴晨伟, 王中旺, 魏力, 韦冬. 超声振动辅助磨料流抛光技术研究综述[J]. 机械工程学报, 2021, 57(9): 233-253. |
[13] | 雷正龙, 郭亨通, 张登明, 李谦. 5A06 铝合金超声辅助激光填丝焊接熔池流动与结晶行为研究[J]. 机械工程学报, 2021, 57(6): 78-86. |
[14] | 张翔宇, 路正惠, 彭振龙, 张德远. 钛合金的高质高效超声振动切削加工[J]. 机械工程学报, 2021, 57(5): 133-147. |
[15] | 韩光超, 石秋雨, 沈豫楚, 徐林红, 刘初见. 多模式超声振动等径角挤压超细晶纯铝成形机理研究[J]. 机械工程学报, 2021, 57(23): 241-251. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||