机械工程学报 ›› 2024, Vol. 60 ›› Issue (13): 2-20.doi: 10.3901/JME.2024.13.002
孙之琳1, 王凯峰1,2, 顾佩华1,2
收稿日期:
2023-11-01
修回日期:
2024-03-06
出版日期:
2024-07-05
发布日期:
2024-08-24
作者简介:
孙之琳,女,1993年出生,博士研究生。主要研究方向为可适应设计及评价方法。E-mail:sunzl@tju.edu.cn;王凯峰(通信作者),男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为智能产品设计、数字化设计及成型技术。E-mail:wangkf@tju.edu.cn;顾佩华,男,1953年出生,博士,教授,博士研究生导师,加拿大工程院院士。主要研究方向为智能制造、可适应设计理论等。E-mail:peihua.gu@tju.edu.cn
基金资助:
SUN Zhilin1, WANG Kaifeng1,2, GU Peihua1,2
Received:
2023-11-01
Revised:
2024-03-06
Online:
2024-07-05
Published:
2024-08-24
摘要: 分析设计和制造领域相关文献的主题和关键词,梳理设计理论与方法研究的发展历程;分析制造技术与信息技术同设计理论之间的关系,从时间上将设计理论研究的发展分为四个阶段。从产品全生命周期阶段的角度对广泛使用的设计理论与方法进行分类总结,阐述各类方法的概念、特点及应用范围。从设计过程表达、设计知识管理以及设计评价决策的角度,总结促进设计理论进步的关键技术。最后从面向复杂系统的设计、人工智能与设计以及环境友好的绿色设计三个方面对未来研究趋势进行展望。
中图分类号:
孙之琳, 王凯峰, 顾佩华. 设计理论与方法研究的回顾与展望[J]. 机械工程学报, 2024, 60(13): 2-20.
SUN Zhilin, WANG Kaifeng, GU Peihua. Review and Prospect for Design Theory and Methodology Research[J]. Journal of Mechanical Engineering, 2024, 60(13): 2-20.
[1] YOSHIKAWA H. Design philosophy:the state of the art[J]. CIRP Annals, 1989, 38(2):579-586. [2] PETERS J, KRAUSE K L, AGERMAN E. Design:An integrated approach[J]. CIRP Annals, 1990, 39(2):599-607. [3] 谢友柏. 现代设计理论和方法的研究[J]. 机械工程学报, 2004, 40(4):1-9. XIE Youbai. Study on the modern design theory and methodology[J]. Chinese Journal of Mechanical Engineering, 2004, 40(4):1-9. [4] BRISSAUD D, SAKAO T, RIEL A, et al. Designing value-driven solutions:The evolution of industrial product-service systems[J]. CIRP Annals, 2022, 71(2):553-575. [5] ROUCOULES L, ANWER N. Coevolution of digitalisation, organisations and product development cycle[J]. CIRP Annals, 2021, 70(2):519-542. [6] SHAW M C. Creative design[J]. CIRP Annals, 1986, 35(2):461-466. [7] SUH N P. Basic concepts in design for producibility[J]. CIRP Annals, 1988, 37(2):559-567. [8] FU K K, YANG M C, WOOD K L. Design principles:Literature review, analysis, and future directions[J]. Journal of Mechanical Design, 2016, 138(10):101103. [9] ALTING L. Life cycle engineering and design[J]. CIRP Annals, 1995, 44(2):569-580. [10] RAMANI K, RAMANUJAN D, BERNSTEIN W Z, et al. Integrated sustainable life cycle design:A review[J]. Journal of Mechanical Design, 2010, 132(9):091004. [11] SOHLENIUS G. Concurrent engineering[J]. CIRP Annals, 1992, 41(2):645-655. [12] SELIGER G. Product innovation - industrial approach[J]. CIRP Annals, 2001, 50(2):425-443. [13] LU S C Y, ELMARAGHY W, SCHUH G, et al. A scientific foundation of collaborative engineering[J]. CIRP Annals, 2007, 56(2):605-634. [14] LU S C Y, SHPITALNI M, GADH R. Virtual and augmented reality technologies for product realization[J]. CIRP Annals, 1999, 48(2):471-495. [15] BERNARD A, FISCHER A. New trends in rapid product development[J]. CIRP Annals, 2002, 51(2):635-652. [16] MONOSTORI L, VÁNCZA J, KUMARA S R T. Agent-based systems for manufacturing[J]. CIRP Annals, 2006, 55(2):697-720. [17] ROY R, HINDUJA S, TETI R. Recent advances in engineering design optimisation:Challenges and future trends[J]. CIRP Annals, 2008, 57(2):697-715. [18] KOREN Y, HU S J, GU P, et al. Open-architecture products[J]. CIRP Annals, 2013, 62(2):719-729. [19] TICHKIEWITCH S, SHPITALNI M, KRAUSE F L. Virtual research lab:A new way to do research[J]. CIRP Annals, 2006, 55(2):769-792. [20] NEE A Y C, ONG S K, CHRYSSOLOURIS G, et al. Augmented reality applications in design and manufacturing[J]. CIRP Annals, 2012, 61(2):657-679. [21] LUTTERS E, VAN HOUTEN F J A M, BERNARD A, et al. Tools and techniques for product design[J]. CIRP Annals, 2014, 63(2):607-630. [22] YIN Y H, NEE A Y C, ONG S K, et al. Automating design with intelligent human-machine integration[J]. CIRP Annals, 2015, 64(2):655-677. [23] THOMPSON M K, MORONI G, VANEKER T, et al. Design for additive manufacturing:Trends, opportunities, considerations, and constraints[J]. CIRP Annals, 2016, 65(2):737-760. [24] VANEKER T, BERNARD A, MORONI G, et al. Design for additive manufacturing:Framework and methodology[J]. CIRP Annals, 2020, 69(2):578-599. [25] TOMIYAMA T, LUTTERS E, STARK R, et al. Development capabilities for smart products[J]. CIRP Annals, 2019, 68(2):727-750. [26] JONES D, SNIDER C, NASSEHI A, et al. Characterising the digital twin:A systematic literature review[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29:36-52. [27] MEIER H, ROY R, SELIGER G. Industrial product-service systems-IPS2[J]. CIRP Annals, 2010, 59(2):607-627. [28] PESSOA M V P. Smart design engineering:leveraging product design and development to exploit the benefits from the 4th industrial revolution[J]. Design Science, 2020, 6:e25. [29] MALSHE A P, BAPAT S, RAJURKAR K P, et al. Exploring the intersection of biology and design for product innovations[J]. CIRP Annals, 2023, 72(2):569-592. [30] TOMIYAMA T, GU P, JIN Y, et al. Design methodologies:industrial and educational applications[J]. CIRP Annals, 2009, 58(2):543-565. [31] PAHL G, BEITZ W. Engineering design:A systematic approach[M]. London:Springer, 1996. [32] MAYDA M, BöRKLü H R. An integration of TRIZ and the systematic approach of Pahl and Beitz for innovative conceptual design process[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2013, 36(4):859-870. [33] KANNENGIESSER U, GERO J S. Can Pahl and Beitz’ systematic approach be a predictive model of designing?[J]. Design Science, 2017, 3:e24. [34] WEISS M P, HARI A. Extension of the Pahl & Beitz systematic method for conceptual design of a new product[J]. Procedia CIRP, 2015, 36:254-260. [35] SUH N P. Axiomatic design theory for systems[J]. Research in Engineering Design, 1998, 10(4):189-209. [36] SUH N P. Axiomatic design:advances and applications[M]. New York:Oxford University Press, 2001. [37] SUH N P. Axiomatic design of mechanical systems[J]. Journal of Mechanical Design, 1995, 117:2-10. [38] EL-HAIK B S. Axiomatic quality:integrating axiomatic design with six-Sigma, reliability, and quality engineering[M]. Hoboken:John Wiley & Sons Inc, 2005. [39] SUH N P. Axiomatic design and fabrication of composite structures:Applications in robots, machine tools, and automobiles[M]. New York:Oxford University Press, 2005. [40] BANG I C, HEO G. An axiomatic design approach in development of nanofluid coolants[J]. Applied Thermal Engineering, 2009, 29(1):75-90. [41] SUH N P, CHO D H. The on-line electric vehicle:Wireless electric ground transportation systems[M]. Switzerland:Springer, 2017. [42] SUH N P. Axiomatic design and design thinking in humanities and social sciences in the 21st century[C]//MATEC Web of Conferences, EDP Sciences, 2018, 223:01025 [43] ERDEN M S, KOMOTO H, VAN BEEK T J, et al. A review of function modeling:Approaches and applications[J]. Artificial Intelligence for Engineering Design, 2008, 22(2):147-169. [44] GERO J S. Design prototypes:a knowledge representation schema for design[J]. AI Magazine, 1990, 11(4):26-36. [45] GERO J S, KANNENGIESSER U. The situated function-behaviour-structure framework[J]. Design Studies, 2004, 25(4):373-391. [46] QIAN L, GERO J S. Function-behavior-structure paths and their role in analogy-based design[J]. Artificial Intelligence for Engineering Design, 2009, 10(4):289-312. [47] CHRISTOPHE F, BERNARD A, COATANéA É. RFBS:a model for knowledge representation of conceptual design[J]. CIRP Annals, 2010, 59(1):155-158. [48] UMEDA Y, TAKEDA H, TOMIYAMA T, et al. Function, behaviour, and structure[J]. Applications of Artificial Intelligence in Engineering V, 1990, 1:177-193. [49] TAKEDA H, YOSHIOKA M, TOMIYAMA T, et al. Analysis of design processes by function, behavior and structure[C]//The Delft Protocols Workshop, Conference Proceedings, Citeseer, 1994. [50] UMEDA Y, TOMIYAMA T, YOSHIKAWA H. FBS modeling:Modeling scheme of function for conceptual design[C]//Proc of the 9th Int Workshop on Qualitative Reasoning, 1995:271-278. [51] TOMIYAMA T. Function allocation theory for creative design[J]. Procedia CIRP, 2016, 50:210-215. [52] GU P, HASHEMIAN M, SOSALE S, et al. An integrated modular design methodology for life-cycle engineering[J]. CIRP Annals, 1997, 46(1):71-74. [53] ULRICH K. The role of product architecture in the manufacturing firm[J]. Research Policy, 1995, 24(3):419-440. [54] GU P, SLEVINSKY M. Mechanical bus for modular product design[J]. CIRP Annals, 2003, 52(1):113-116. [55] VAN BEEK T J, ERDEN M S, TOMIYAMA T. Modular design of mechatronic systems with function modeling[J]. Mechatronics, 2010, 20(8):850-863. [56] LI Y, WANG Z, ZHONG X, et al. Identification of influential function modules within complex products and systems based on weighted and directed complex networks[J]. Journal of Intelligent Manufacturing, 2018, 30(6):2375-2390. [57] 高卫国, 徐燕申, 陈永亮, 等. 广义模块化设计原理及方法[J]. 机械工程学报, 2007, 43(6):48-54. GAO Weiguo, XU Yanshen, CHEN Yongliang, et al. Theory and methodology of generalized modular design[J]. Journal of Mechanical Engineering, 2007, 43(6):48-54. [58] BRUNOE T D, SOERENSEN D G H, NIELSEN K. Modular design method for reconfigurable manufacturing systems[J]. Procedia CIRP, 2021, 104:1275-1279. [59] TSENG M M, JIAO J, MERCHANT M E. Design for mass customization[J]. CIRP Annals, 1996, 45(1):153-156. [60] HUANG Z, YIP-HOI D. Parametric modeling of part family machining process plans from independently generated product data sets[J]. Journal of Computing and Information Science in Engineering, 2003, 3(3):231-242. [61] JOSE A, TOLLENAERE M. Modular and platform methods for product family design:Literature analysis[J]. Journal of Intelligent Manufacturing, 2005, 16(3):371-390. [62] KUMAR A. From mass customization to mass personalization:A strategic transformation[J]. International Journal of Flexible Manufacturing Systems, 2008, 19(4):533-547. [63] TSENG M M, JIAO R J, WANG C. Design for mass personalization[J]. CIRP Annals, 2010, 59(1):175-178. [64] LI T, HE T, WANG Z, et al. An approach to IoT service optimal composition for mass customization on cloud manufacturing[J]. IEEE Access, 2018, 6:50572-50586. [65] AHELEROFF S, MOSTASHIRI N, XU X, et al. Mass personalisation as a service in industry 4.0:A resilient response case study[J]. Advanced Engineering Informatics, 2021, 50:101438. [66] ZHENG P, YU S, WANG Y, et al. User-experience based product development for mass personalization:A case study[J]. Procedia CIRP, 2017, 63:2-7. [67] ILEVBARE I M, PROBERT D, PHAAL R. A review of TRIZ, and its benefits and challenges in practice[J]. Technovation, 2013, 33(2-3):30-37. [68] 邵云飞, 王思梦, 詹坤. TRIZ理论集成与应用研究综述[J]. 电子科技大学学报(社科版), 2019, 21(4):30-39. SHAO Yunfei, WANG Simeng, ZHAN Kun. A review of TRIZ theory integration and its application[J]. Journal of UESTC (Social Sciences Edition), 2019, 21(4):30-39. [69] SPREAFICO C. Can TRIZ (theory of inventive problem solving) strategies improve material substitution in eco-design?[J]. Sustainable Production and Consumption, 2022, 30:889-915. [70] RAU H, WU J-J, PROCOPIO K M. Exploring green product design through TRIZ methodology and the use of green features[J]. Computers & Industrial Engineering, 2023, 180:109252. [71] 徐悬. 基于并行工程的产品设计研究[M]. 北京:北京理工大学出版社, 2019. XU Xuan. Research on product design based on concurrent engineering[M]. Beijing:Beijing Institute of Technology Press, 2019. [72] STJEPANDIĆ J, WOGNUM N, VERHAGEN W J C. Concurrent engineering in the 21st century[M]. New York:Springer, 2015. [73] KUO T, HUANG S H, ZHANG H. Design for manufacture and design for 'X’:Concepts, applications, and perspectives[J]. Computers & Industrial Engineering, 2001, 41(3):241-260. [74] TOYE G, CUTKOSKY M R, LEIFER L J, et al. Share:A methodology and environment for collaborative product development[J]. International Journal of Cooperative Information Systems, 1994, 03(02):129-153. [75] HAO Q, SHEN W, ZHANG Z, et al. Agent-based collaborative product design engineering:an industrial case study[J]. Computers in Industry, 2006, 57(1):26-38. [76] DE SILVA R K J, RUPASINGHE T D, APEAGYEI P. A collaborative apparel new product development process model using virtual reality and augmented reality technologies as enablers[J]. International Journal of Fashion Design, Technology and Education, 2018, 12(1):1-11. [77] KIM D, BUFARDI A, XIROUCHAKIS P. Compatibility measurement in collaborative conceptual design[J]. CIRP Annals, 2006, 55(1):151-154. [78] MOALLEM M. An interactive online course:a collaborative design model[J]. Educational Technology Research and Development, 2003, 51(4):85-103. [79] LIU C, LE ROUX L, KöRNER C, et al. Digital twin-enabled collaborative data management for metal additive manufacturing systems[J]. Journal of Manufacturing Systems, 2022, 62:857-874. [80] 江平宇, 朱琦琦, 张定红. 工业产品服务系统及其研究现状[J]. 计算机集成制造系统, 2011, 17(9):2071-2078. JIANG Pingyu, ZHU Qiqi, ZHANG Dinghong. Industrial product service system and its current research[J]. Computer Integrated Manufacturing Systems, 2011, 17(9):2071-2078. [81] SAKAO T, LINDAHL M. A value based evaluation method for product/service system using design information[J]. CIRP Annals, 2012, 61(1):51-54. [82] ZHENG P, WANG Z, CHEN C. Industrial smart product-service systems solution design via hybrid concerns[J]. Procedia CIRP, 2019, 83:187-192. [83] BELKADI F, BOLI N, USATORRE L, et al. A knowledge-based collaborative platform for PSS design and production[J]. CIRP Journal of Manufacturing Science and Technology, 2020, 29:220-231. [84] BAINES T S, LIGHTFOOT H W, EVANS S, et al. State-of-the-art in product-service systems[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2007, 221(10):1543-1552. [85] CONG J, CHEN C, ZHENG P, et al. A holistic relook at engineering design methodologies for smart product- service systems development[J]. Journal of Cleaner Production, 2020, 272:122737. [86] ZHENG P, LIN T, CHEN C, et al. A systematic design approach for service innovation of smart product-service systems[J]. Journal of Cleaner Production, 2018, 201:657-667. [87] 从靖晨, 项忠霞, 李心雨, 等. 基于知识图谱的智能产品服务系统交互设计研究[J]. 机械工程学报, 2023, 59(11):94-104. CONG Jingchen, XIANG Zhongxia, LI Xinyu, et al. A knowledge graph-based interaction design method for smart product-service system development[J]. Journal of Mechnical Engineering, 2023, 59(11):94-104. [88] CONG J, CHEN C, ZHENG P. Design entropy theory:A new design methodology for smart pss development[J]. Advanced Engineering Informatics, 2020, 45:101124. [89] LIU B, ZHANG Y, ZHANG G, et al. Edge-cloud orchestration driven industrial smart product-service systems solution design based on CPS and IIoT[J]. Advanced Engineering Informatics, 2019, 42:100984. [90] MACHCHHAR R J, TOLLER C N K, BERTONI A, et al. Data-driven value creation in smart product-service system design:State-of-the-art and research directions[J]. Computers in Industry, 2022, 137:103606. [91] CARRERA-RIVERA A, LARRINAGA F, LASA G. Context-awareness for the design of smart-product service systems:Literature review[J]. Computers in Industry, 2022, 142. [92] CONG J, ZHENG P, BIAN Y, et al. A machine learning-based iterative design approach to automate user satisfaction degree prediction in smart product-service system[J]. Computers & Industrial Engineering, 2022, 165:107939. [93] CONG J, CHEN C, MENG X, et al. Conceptual design of a user-centric smart product-service system using self-organizing map[J]. Advanced Engineering Informatics, 2023, 55:101857. [94] 张国军, 程强, 张健. 可重用设计[M]. 北京:清华大学出版社, 2022. ZHANG Guojun, CHENG Qiang, ZHANG Jian. Reusable design[M]. Beijing:Tsinghua University Press, 2022. [95] SIVALOGANATHAN S, SHAHIN T M M. Design reuse:an overview[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 1999, 213(7):641-654. [96] ETTLIE J E, KUBAREK M. Design reuse in manufacturing and services[J]. Journal of Product Innovation Management, 2008, 25(5):457-472. [97] MINUNNO R, O'GRADY T, MORRISON G M, et al. Exploring environmental benefits of reuse and recycle practices:A circular economy case study of a modular building[J]. Resources, Conservation and Recycling, 2020, 160:104855. [98] GU P, HASHEMIAN M, NEE A Y C. Adaptable design[J]. CIRP Annals, 2004, 53(2):539-557. [99] GU P, XUE D, NEE A Y C. Adaptable design:concepts, methods, and applications[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2009, 223(11):1367-1387. [100] LI Y, XUE D, GU P. Design for product adaptability[J]. Concurrent Engineering, 2008, 16(3):221-232. [101] ZHANG J, XUE G, DU H, et al. Enhancing interface adaptability of open architecture products[J]. Research in Engineering Design, 2017, 28(4):545-560. [102] FLETCHER D, BRENNAN R W, GU P. A method for quantifying adaptability in engineering design[J]. Concurrent Engineering, 2010, 17(4):279-289. [103] CHENG Q, ZHANG G, LIU Z, et al. A structure-based approach to evaluation product adaptability in adaptable design[J]. Journal of Mechanical Science and Technology, 2011, 25(5):1081-1094. [104] SUN Z, WANG K, GU P. Information entropy approach to design adaptability evaluation[J]. CIRP Annals, 2023, 72(1):97-100. [105] 孙之琳, 王凯峰, 陈永亮, 等. 产品可适应设计评价的信息熵方法[J]. 工程设计学报, 2021, 28(1):1-13. SUN Zhilin, WANG Kaifeng, CHEN Yongliang, et al. Information entropy method for product adaptable design evaluation[J]. Chinese Journal of Engineering Design, 2021, 28(1):1-13. [106] PENG Q, LIU Y, ZHANG J, et al. Personalization for massive product innovation using open architecture[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1):31-34. [107] ZHANG J, GU P, PENG Q, et al. Open interface design for product personalization[J]. CIRP Annals, 2017, 66(1):173-176. [108] ZHANG J, LI B, PENG Q, et al. Product specification analysis for modular product design using big sales data[J]. Chinese Journal of Mechanical Engineering, 2023, 36(1):35-49. [109] CHANDRASEGARAN S K, RAMANI K, SRIRAM R D, et al. The evolution, challenges, and future of knowledge representation in product design systems[J]. Computer-Aided Design, 2013, 45(2):204-228. [110] FRIEDENTHAL S, MOORE A, STEINER R. A practical guide to SysML:the systems modeling language[M]. Waltham:Morgan Kaufmann, 2014. [111] HOLT J, PERRY S. SysML for systems engineering[M]. London:IET, 2008. [112] HAUSE M. The SysML modelling language[C]// Fifteenth European Systems Engineering Conference, September 18-20, 2006, INCOSE, 2006:1-12. [113] DORI D. Model-based systems engineering with OPM and SysML[M]. New York:Springer, 2016. [114] ZENG Y, GU P. A science-based approach to product design theory part I:formulation and formalization of design process[J]. Robotics and Computer-Integrated Manufacturing, 1999, 15(4):331-339. [115] ZENG Y, GU P. A science-based approach to product design theory part II:formulation of design requirements and products[J]. Robotics and Computer- Integrated Manufacturing, 1999, 15(4):341-352. [116] 曾勇, 张执南. 面向环境的设计:一个创新设计的理论与方法[J]. 上海交通大学学报, 2019, 53(7):881-883. ZENG Yong, ZHANG Zhinan. Environment-based design (EBD):a methodology for innovative and creative design[J]. Journal of Shanghai Jiao Tong University, 2019, 53(7):881-883. [117] LIAO S. Expert system methodologies and applications-a decade review from 1995 to 2004[J]. Expert Systems with Applications, 2005, 28(1):93-103. [118] LINDSAY R K, BUCHANAN B G, FEIGENBAUM E A, et al. Dendral:a case study of the first expert system for scientific hypothesis formation[J]. Artificial Intelligence, 1993, 61(2):209-261. [119] TAN C, WAHIDIN L, KHALIL S N, et al. The application of expert system:a review of research and applications[J]. ARPN Journal of Engineering and Applied Sciences, 2016, 11(4):2448-2453. [120] CHEN X, JIA S, XIANG Y. A review:knowledge reasoning over knowledge graph[J]. Expert Systems with Applications, 2020, 141:1129448. [121] KO H, WITHERELL P, LU Y, et al. Machine learning and knowledge graph based design rule construction for additive manufacturing[J]. Additive Manufacturing, 2021, 37:101620. [122] LIU A, ZHANG D, WANG Y, et al. Knowledge graph with machine learning for product design[J]. CIRP Annals, 2022, 71(1):117-120. [123] MONOSTORI L, KáDáR B, BAUERNHANSL T, et al. Cyber-physical systems in manufacturing[J]. CIRP Annals, 2016, 65(2):621-641. [124] TRAPPEY A J C, LU T, FU L. Development of an intelligent agent system for collaborative mold production with RFID technology[J]. Robotics and Computer-Integrated Manufacturing, 2009, 25(1):42-56. [125] LEITAO P, KARNOUSKOS S, RIBEIRO L, et al. Smart agents in industrial cyber-physical systems[J]. Proceedings of the IEEE, 2016, 104(5):1086-1101. [126] 庄存波, 刘检华, 熊辉, 等. 产品数字孪生体的内涵、体系结构及其发展趋势[J]. 计算机集成制造系统, 2017, 23(4):753-768. ZHUANG Cunbo, LIU Jianhua, XIONG Hui, et al. Connotation, architecture and trends of product digital twin[J]. Computer Integrated Manufacturing Systems, 2017, 23(4):753-768. [127] GRIEVES M W. Product lifecycle management:the new paradigm for enterprises[J]. International Journal of Product Development, 2005, 2(1/2):71-84. [128] 张辰源, 陶飞. 数字孪生模型评价指标体系[J]. 计算机集成制造系统, 2021, 27(8):2171-2186. ZHANG Chenyuan, TAO Fei. Evaluation index system for digital twin model[J]. Computer Integrated Manufacturing Systems, 2021, 27(8):2171-2186. [129] WANG B, ZHENG P, YIN Y, et al. Toward human-centric smart manufacturing:A human-cyber-physical systems (HCPS) perspective[J]. Journal of Manufacturing Systems, 2022, 63:471-490. [130] ZHOU J, ZHOU Y, WANG B, et al. Human-cyber-physical systems (HCPSs) in the context of new-generation intelligent manufacturing[J]. Engineering, 2019, 5(4):624-636. [131] LIM K Y H, ZHENG P, CHEN C, et al. A digital twin-enhanced system for engineering product family design and optimization[J]. Journal of Manufacturing Systems, 2020, 57:82-93. [132] LIU S, WANG L, WANG X V. Symbiotic human-robot collaboration:Multimodal control using function blocks[J]. Procedia CIRP, 2020, 93:1188-1193. [133] WANG L, NG A H C, DEB K. Multi-objective evolutionary optimisation for product design and manufacturing[M]. New York:Springer, 2011. [134] ZHOU J, XIAHOU T, LIU Y. Multi-objective optimization-based TOPSIS method for sustainable product design under epistemic uncertainty[J]. Applied Soft Computing, 2021, 98:106850. [135] SHANNON C E. A mathematical theory of communication[J]. Bell System Technical Journal, 1948, 27(3):379-423. [136] KAN J W, BILDA Z, GERO J S. Comparing entropy measures of idea links in design protocols:Linkography entropy measurement and analysis of differently conditioned design sessions[J]. AI EDAM, 2006, 21(4):367-377. [137] WU L, LI J, LEI T. Design entropy:A new approach for evaluating user experience in user interface design[C]//Advances in ergonomics in design, Proceedings of the AHFE 2016 International Conference on Ergonomics in Design, July 27-31, 2016, Florida. Springer International Publishing, 2016:583-593. [138] WANG L, LIU Z, LIU A, et al. Artificial intelligence in product lifecycle management[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(3-4):771-796. [139] ZHANG J, CHU X, SIMEONE A, et al. Machine learning-based design features decision support tool via customers purchasing data analysis[J]. Concurrent Engineering, 2020, 29(2):124-141. [140] ZHANG H, PENG Q, ZHANG J, et al. Planning for automatic product assembly using reinforcement learning[J]. Computers in Industry, 2021, 130:103471. [141] CHONG L, RAINA A, GOUCHER-LAMBERT K, et al. The evolution and impact of human confidence in artificial intelligence and in themselves on AI-assisted decision-making in design[J]. Journal of Mechanical Design, 2023, 145(3):031401. [142] BOUSCHERY S G, BLAZEVIC V, PILLER F T. Augmenting human innovation teams with artificial intelligence:Exploring transformer‐based language models[J]. Journal of Product Innovation Management, 2023, 40(2):139-153. [143] SHU L H, UEDA K, CHIU I, et al. Biologically inspired design[J]. CIRP Annals, 2011, 60(2):673-693. [144] SHU L H, CHEONG H. A natural language approach to biomimetic design[J]. Biologically Inspired Design, 2014:29-61. [145] VINCENT J F V, BOGATYREVA O A, BOGATYREV N R, et al. Biomimetics:Its practice and theory[J]. J. R. Soc. Interface, 2006, 3(9):471-482. [146] LIU A, TEO I, CHEN D, et al. Biologically inspired design of context-aware smart products[J]. Engineering, 2019, 5(4):637-645. [147] ZHANG Y, WANG Z, ZHANG Y, et al. Bio-inspired generative design for support structure generation and optimization in additive manufacturing (AM)[J]. CIRP Annals, 2020, 69(1):117-120. |
[1] | 李欢笑, 吕胜男, 马小飞, 李昊, 林坤阳. 在轨组装空间天线模块化单元设计方法[J]. 机械工程学报, 2024, 60(13): 345-353. |
[2] | 田少杰, 刘雪峰, 王文静, 崔庆贺, 郝健博. 超声振动系统的研究现状及其在塑性成形领域的应用进展[J]. 机械工程学报, 2023, 59(20): 198-214. |
[3] | 吴金明, 陈妮, 钱晨. 惯性式波浪能供电浮标的液压能量转换系统设计研究[J]. 机械工程学报, 2022, 58(4): 222-231. |
[4] | 张超, 周光辉, 李晶晶, 魏智博, 常丰田. 新一代信息技术赋能的数字孪生制造单元系统关键技术及应用研究[J]. 机械工程学报, 2022, 58(16): 329-343. |
[5] | 刘明, 谭磊, 曹树良. 基于分段四次速度矩分布的叶片式气液混输泵导叶设计方法[J]. 机械工程学报, 2022, 58(10): 280-288. |
[6] | 熊鼎宇, 屈飘, 朱中琪, 龚志远, 刘长勇, 王沛, 劳长石, 苑景坤, 曹继伟, 陈张伟. 陶瓷挤出和喷射增材制造技术研究进展[J]. 机械工程学报, 2021, 57(17): 253-262. |
[7] | 王永青, 邓建辉, 李特, 刘阔, 刘海波, 马书根. 软体机器人3D打印制造技术研究综述[J]. 机械工程学报, 2021, 57(15): 186-198. |
[8] | 张自强, 廖金秾, 赵京, 王伦. 单自由度八杆仿生机构构型与尺度同步设计方法[J]. 机械工程学报, 2020, 56(23): 58-66. |
[9] | 王琥, 李启迪, 李光耀. 变刚度复合材料结构设计方法及不确定性分析研究进展[J]. 机械工程学报, 2019, 55(8): 46-55. |
[10] | 郭军礼, 董志波, 刘雪松, 王苹, 方洪渊. 基于等承载思想的低匹配T型接头设计[J]. 机械工程学报, 2019, 55(6): 1-10. |
[11] | 马铭璐, 邓帅, 赵力, 林杉, 张莹, 倪佳鑫, 苏文. 基于有机朗肯循环的太阳能驱动冷热电联供系统设计方法及性能分析[J]. 机械工程学报, 2019, 55(6): 178-185. |
[12] | 黎明, 师宏耕, 赖一楠, 黄迅, 李宏伟, 赵春章, 叶鑫. 航天先进制造技术研究联合基金管理工作综述[J]. 机械工程学报, 2018, 54(9): 1-8. |
[13] | 陶飞, 戚庆林. 面向服务的智能制造[J]. 机械工程学报, 2018, 54(16): 11-23. |
[14] | 郑昱, 孟凡伟, 杨占立, 易旺民. 基于试验设计方法和响应面方法的九索并联机构优化设计[J]. 机械工程学报, 2017, 53(17): 92-102. |
[15] | 马玲, 罗远新, 宋宗焘, 王勇勤. 疲劳-蠕变交互作用下挤压筒设计理论及寿命预测模型[J]. 机械工程学报, 2017, 53(16): 163-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||