[1] BENGISU M. Engineering ceramics[M]. New York:Springer Science & Business Media,2013. [2] GIBSON I,ROSEN D,STUCKER B. Additive manufacturing technologies:3D printing,rapid prototyping,and direct digital manufacturing[M]. New York:Springer,2014. [3] CHEN Z,LI Z,LI J,et al. 3D printing of ceramics:A review[J]. Journal of the European Ceramic Society,2019,39(4):661-687. [4] 刘雨,陈张伟. 陶瓷光固化3D打印技术研究进展[J]. 材料工程,2020,48(9):1-13. LIU Yu,CHEN Zhangwei. Research progress on photopolymerization-based 3D printing technology of ceramics[J]. Journal of Materials Engineering,2020,48(9):1-13. [5] MARCUS H L,BEAMAN J J,BARLOW J W,et al. Solid freeform fabrication-powder processing[J]. American Ceramic Society Bulletin,1990,69(6):1030-1031. [6] 朱东彬,楚锐清,张晓旭,等. 陶瓷喷墨打印机理研究进展[J]. 机械工程学报,2017,53(013):108-117. ZHU Dongbin,CHU Ruiqing,ZHANG Xiaoxu,et al. Progress in mechanism of ceramics inkjet printing[J]. Journal of Mechanical Engineering,2017,53(13):108-117. [7] CHUA C K,LEONG K F,LIM C S. Rapid prototyping:principles and applications[M]. Singapore:World Scientific,2003. [8] KHATRI B,LAPPE K,HABEDANK M,et al. Fused deposition modeling of abs-barium titanate composites:A simple route towards tailored dielectric devices[J]. Polymers,2018,10(6):20734360. [9] DANFORTH S. Fused deposition of ceramics:A new technique for the rapid fabrication of ceramic components[J]. Materials Technology,1995,10(7-8):144-146. [10] ALLAHVERDI M,DANFORTH S,JAFARI M,et al. Processing of advanced electroceramic components by fused deposition technique[J]. Journal of the European Ceramic Society,2001,21(10-11):1485-1490. [11] XU N,YE X,WEI D,et al. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair[J]. ACS Applied Materials & Interfaces,2014,6(17):14952-14963. [12] YANG H,YANG S,CHI X,et al. Fine ceramic lattices prepared by extrusion freeforming[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2006,79(1):116-121. [13] JAFARI M,HAN W,MOHAMMADI F,et al. A novel system for fused deposition of advanced multiple ceramics[J]. Rapid Prototyping Journal,2000,6(3):161-175. [14] IYER S,MCINTOSH J,BANDYOPADHYAY A,et al. Microstructural characterization and mechanical properties of Si3N4 formed by fused deposition of ceramics[J]. International Journal of Applied Ceramic Technology,2008,5(2):127-137. [15] SA M W,NGUYEN B N B,MORIARTY R A,et al. Fabrication and evaluation of 3D printed BCP scaffolds reinforced with ZrO2 for bone tissue applications[J]. Biotechnology and Bioengineering,2018,115(4):989-999. [16] RANGARAJAN S,QI G,VENKATARAMAN N,et al. Powder processing,theology,and mechanical properties of feedstock for fused deposition of Si3N4 ceramics[J]. Journal of the American Ceramic Society,2000,83(7):1663-1669. [17] KALITA S J,BOSE S,HOSICK H L,et al. Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling[J]. Materials Science and Engineering:C,2003,23(5):611-620. [18] ZOCCA A,COLOMBO P,GOMES C M,et al. Additive manufacturing of ceramics:Issues,potentialities,and opportunities[J]. Journal of the American Ceramic Society,2015,98(7):1983-2001. [19] MOHAMED O A,MASOOD S H,BHOWMIK J L. Optimization of fused deposition modeling process parameters:A review of current research and future prospects[J]. Advances in Manufacturing,2015,3(1):42-53. [20] TSANG V L,BHATIA S N. Three-dimensional tissue fabrication[J]. Advanced Drug Delivery Reviews,2004,56(11):1635-1647. [21] CESARANO I,SEGALMAN R. Robocasting provides moldless fabrication from slurry deposition[J]. Ceramic Industry,1998,148(4):94-100. [22] CESARANO III J,CALVERT P D. Freeforming objects with low-binder slurry:US6027326[P]. 2000-02-22. [23] FEILDEN E,BLANCA E G T,GIULIANI F,et al. Robocasting of structural ceramic parts with hydrogel inks[J]. Journal of the European Ceramic Society,2016,36(10):2525-2533. [24] LEWIS J A,SMAY J E,STUECKER J,et al. Direct ink writing of three-dimensional ceramic structures[J]. Journal of the American Ceramic Society,2006,89(12):3599-3609. [25] ELSAYED H,COLOMBO P,BERNARDO E. Direct ink writing of wollastonite-diopside glass-ceramic scaffolds from a silicone resin and engineered fillers[J]. Journal of the European Ceramic Society,2017,37(13):4187-4195. [26] SMAY J E,GRATSON G M,SHEPHERD R F,et al. Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials,2002,14(18):1279-1283. [27] LEWIS J A. Direct-write assembly of ceramics from colloidal inks[J]. Current Opinion in Solid State and Materials Science,2002,6(3):245-250. [28] SIMON J L,MICHNA S,LEWIS J A,et al. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing[J]. Journal of Biomedical Materials Research Part A,2007,83(3):747-758. [29] SUN K,WEI T S,AHN B Y,et al. 3D printing of interdigitated Li-Ion microbattery architectures[J]. Advanced Materials,2013,25(33):4539-4543. [30] LIU C,XU F,LIU Y,et al. High mass loading ultrathick porous Li4Ti5O12 electrodes with improved areal capacity fabricated via low temperature direct writing[J]. Electrochimica Acta,2019,314:81-88. [31] MIRANDA P,PAJARES A,SAIZ E,et al. Mechanical properties of calcium phosphate scaffolds fabricated by robocasting[J]. Journal of Biomedical Materials Research Part A,2008,85(1):218-227. [32] CESARANO III J,DELLINGER J G,SAAVEDRA M P,et al. Customization of load-bearing hydroxyapatite lattice scaffolds[J]. International Journal of Applied Ceramic Technology,2005,2(3):212-220. [33] 龚志远,朱中琪,屈飘,等. 喷墨打印技术制造新能源器件研究进展[J]. 硅酸盐学报,2021,49(5):855-866. GONG Zhiyuan,ZHU Zhongqi,QU Piao,et al. Research progress on manufacturing of new energy devices using inkjet printing[J],Journal of the Chinese Ceramic Society,2021,49(5):855-866. [34] LE H P. Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology,1998,42(1):49-62. [35] KAWASE T,SHIMODA T,NEWSOME C,et al. Inkjet printing of polymer thin film transistors[J]. Thin Solid Films,2003,438:279-287. [36] KOSMALA A,ZHANG Q,WRIGHT R,et al. Development of high concentrated aqueous silver nanofluid and inkjet printing on ceramic substrates[J]. Materials Chemistry and Physics,2012,132(2-3):788-795. [37] BLAZDELL P,EVANS J,EDIRISINGHE M,et al. The computer aided manufacture of ceramics using multilayer jet printing[J]. Journal of Materials Science Letters,1995,14(22):1562-1565. [38] ZHAO X,EVANS J,EDIRISINGHE M,et al. Formulation of a ceramic ink for a wide-array drop-on-demand ink-jet printer[J]. Ceramics International,2003,29(8):887-892. [39] SEERDEN K A,REIS N,EVANS J R,et al. Ink-jet printing of wax-based alumina suspensions[J]. Journal of the American Ceramic Society,2001,84(11):2514-2520. [40] ÖZKOL E,WäTJEN A M,BERMEJO R,et al. Mechanical characterisation of miniaturised direct inkjet printed 3Y-TZP specimens for microelectronic applications[J]. Journal of the European Ceramic Society,2010,30(15):3145-3152. [41] BHATTI A,MOTT M,EVANS J,et al. PZT pillars for 1-3 composites prepared by ink-jet printing[J]. Journal of materials science letters,2001,20(13):1245-1248. [42] LEJEUNE M,CHARTIER T,DOSSOU-YOVO C,et al. Ink-jet printing of ceramic micro-pillar arrays[J]. Journal of the European Ceramic Society,2009,29(5):905-911. [43] CAPPI B,ÖZKOL E,EBERT J,et al. Direct inkjet printing of Si3N4:Characterization of ink,green bodies and microstructure[J]. Journal of the European Ceramic Society,2008,28(13):2625-2628. [44] MOTT M,EVANS J R. Solid freeforming of silicon carbide by inkjet printing using a polymeric precursor[J]. Journal of the American Ceramic Society,2001,84(2):307-313. [45] 屈飘,欧阳竟,龚志远,等. 燃料电池多孔陶瓷电极薄层的喷墨打印制造[J]. 硅酸盐学报,2020,48(10):1-9. QU Piao,OUYANG Jing,GONG Zhiyuan,et al. Fabrication of porous fuel cell electrode layers via inkjet printing[J]. Journal of the Chinese Ceramic Society,2020,48(10):1-9. [46] CHEN Z,OUYANG J,LIANG W,et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing[J]. Ceramics International,2018,44(11):13381-13388. [47] KIM M,KIM D H,HAN G D,et al. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells[J]. Journal of Alloys and Compounds,2020,843:155806. [48] PANDIYAN S,EL-KHAROUF A,STEINBERGER-WILCKENS R. Formulation of spinel based inkjet inks for protective layer coatings in SOFC interconnects[J]. Journal of Colloid and Interface Science,2020,579:82-95. [49] SUKESHINI A M,CUMMINS R,REITZ T L,et al. Inkjet printing of anode supported SOFC:Comparison of slurry pasted cathode and printed cathode[J]. Electrochemical and Solid-State Letters,2009,12(12):B176-B179. [50] PEYMANNIA M,SOLEIMANI-GORGANI A,GHAHARI M,et al. The effect of different dispersants on the physical properties of nano CoAl2O4 ceramic ink-jet ink[J]. Ceramics International,2015,41(7):9115-9121. [51] SEERDEN K,REIS N,DERBY B,et al. Direct ink-jet deposition of ceramic green bodies:I-Formulation of build materials[J]. MRS Online Proceedings Library Archive,1998,542:141-146. [52] REIS N,SEERDEN K,DERBY B,et al. Direct inkjet deposition of ceramic green bodies:II-jet behaviour and deposit formation[J]. MRS Online Proceedings Library Archive,1998:542. [53] VERWEY E J W,OVERBEEK J T G. Theory of the stability of lyophobic colloids[J]. Journal of Colloid Science,1955,10(2):224-225. [54] GONG Z,ZHU Z,QU P,et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks[J]. Journal of Advanced Ceramics,2021,10:279-290. [55] FROMM J. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM Journal of Research and Development,1984,28(3):322-333. [56] BERGERON V,BONN D,MARTIN J Y,et al. Controlling droplet deposition with polymer additives[J]. Nature,2000,405(6788):772. [57] REIS N,DERBY B. Ink jet deposition of ceramic suspensions:Modeling and experiments of droplet formation[J]. MRS Online Proceedings Library Archive,2000,625:64-70. [58] 朱东彬,吴民强,王竹贤,等. 基于微滴喷射3D打印的纳米颗粒悬浮墨水稳定喷射研究[J]. 机械工程学报,2020,56(9):243-251. ZHU Dongbin,WU Minqiang,WANG Zhuxian,et al. Research on stable jetting of nanoparticle suspension Ink for inkjet 3D printing[J]. Journal of Mechanical Engineering,2020,56(9):243-251. [59] SACHS E M,HAGGERTY J S,CIMA M J,et al. Three-dimensional printing techniques:US5204055A[P/OL]. 1993-02-01[2021-04-01] https://patents.google.com/patent/US5204055A/en. [60] BUTSCHER A,BOHNER M,DOEBELIN N,et al. Moisture based three-dimensional printing of calcium phosphate structures for scaffold engineering[J]. Acta Biomaterialia,2013,9(2):5369-5378. [61] SACHS E,CIMA M,WILLIAMS P,et al. Three dimensional printing:Rapid tooling and prototypes directly from a CAD model[J]. Journal of Engineering for Industry,1992,114(4):481-488. [62] SACHS E,WYLONIS E,ALLEN S,et al. Production of injection molding tooling with conformal cooling channels using the three-dimensional printing process[J]. Polymer Engineering & Science,2000,40(5):1232-1247. [63] WU B M,BORLAND S W,GIORDANO R A,et al. Solid free-form fabrication of drug delivery devices[J]. Journal of Controlled Release,1996,40(1-2):77-87. [64] SINGH R. Three dimensional printing for casting applications:A state of art review and future perspectives[C]. Advanced Materials Research,2010,342-349 [65] CESARETTI G,DINI E,DE KESTELIER X,et al. Building components for an outpost on the Lunar soil by means of a novel 3D printing technology[J]. Acta Astronautica,2014,93:430-450. [66] BUTSCHER A,BOHNER M,HOFMANN S,et al. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing[J]. Acta Biomaterialia,2011,7(3):907-920. [67] WILL J,MELCHER R,TREUL C,et al. Porous ceramic bone scaffolds for vascularized bone tissue regeneration[J]. Journal of Materials Science:Materials in Medicine,2008,19(8):2781-2790. [68] BUTSCHER A,BOHNER M,DOEBELIN N,et al. New depowdering-friendly designs for three-dimensional printing of calcium phosphate bone substitutes[J]. Acta Biomaterialia,2013,9(11):9149-9158. [69] KE D,BOSE S. Effects of pore distribution and chemistry on physical,mechanical,and biological properties of tricalcium phosphate scaffolds by binder-jet 3D printing[J]. Additive Manufacturing,2018,22:111-117. [70] ZOCCA A,ELSAYED H,BERNARDO E,et al. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder[J]. Biofabrication,2015,7(2):025008. [71] MOON J,GRAU J E,KNEZEVIC V,et al. Ink-jet printing of binders for ceramic components[J]. Journal of the American Ceramic Society,2002,85(4):755-762. [72] LAUDER A,CIMA M,SACHS E,et al. Three dimensional printing:Surface finish and microstructure of rapid prototyped components[J]. MRS Online Proceedings Library Archive,1991:249. [73] LANZETTA M,SACHS E. Improved surface finish in 3D printing using bimodal powder distribution[J]. Rapid Prototyping Journal,2003,9(3):157-166. [74] ZHANG W,MELCHER R,TRAVITZKY N,et al. Three-dimensional printing of complex-shaped alumina/glass composites[J]. Advanced Engineering Materials,2009,11(12):1039-1043. [75] UTELA B,STORTI D,ANDERSON R,et al. A review of process development steps for new material systems in three dimensional printing (3DP)[J]. Journal of Manufacturing Processes,2008,10(2):96-104. [76] KARAPATIS N,VAN GRIETHUYSEN J,GLARDON R. Direct rapid tooling:a review of current research[J]. Rapid Prototyping Journal,1998,4(2):77-89. [77] FIELDING G A,BANDYOPADHYAY A,BOSE S. Effects of silica and zinc oxide doping on mechanical and biological properties of 3D printed tricalcium phosphate tissue engineering scaffolds[J]. Dental Materials,2012,28(2):113-122. [78] NAN B,YIN X,ZHANG L,et al. Three-dimensional printing of Ti3SiC2-based ceramics[J]. Journal of the American Ceramic Society,2011,94(4):969-972. [79] SUN W,DCOSTA D,LIN F,et al. Freeform fabrication of Ti3SiC2 powder-based structures:Part I-Integrated fabrication process[J]. Journal of Materials Processing Technology,2002,127(3):343-351. |