[1] 杨永强,白玉超,肖泽锋. 激光原位合成新材料研究进展[J]. 新材料产业,2015(1):47-52. YANG Yongqiang,BAI Yuchao,XIAO Zefeng. Research progress of new materials in situ laser synthesis[J]. Advanced Materials Industry,2015(1):47-52. [2] 陈兴,杨城笑,严彪. 金属基陶瓷颗粒增强复合材料的制备方法[J]. 上海有色金属,2008(1):27-31. CHEN Xing, YANG Chengxiao, YAN Biao. Preparation of composite reinforced with metal matrix ceramic particles[J]. Nonferrous Metal Materials and Engineering, 2008(1):27-31. [3] 汝娟坚,贺涵. 陶瓷颗粒增强金属基复合材料的制备方法及研究进展[J]. 科技创新与应用,2019(19):116-117. RU Juanjian, HE Han. Preparation method and research progress of ceramic particles reinforced metal matrix composites[J]. Technology Innovation and Application, 2019(19):116-117. [4] 王迪,陈晓敏,杨永强,等. 基于激光选区熔化的功能零件结构设计优化及制造关键技术研究[J]. 机械工程学报,2018,54(17):165-172. WANG Di,CHEN Xiaomin,YANG Yongqiang,et al. Study on the key techniques of designing optimization and manufacturing of functional part's structure based on selective laser melting technology[J]. Journal of Mechanical Engineering,2018,54(17):165-172. [5] 杨永强,刘洋,杨雄文,等. 基于激光选区熔化的免组装机构直接制造技术[J]. 机械工程学报,2014,50(21):124-132. YANG Yongqiang,LIU Yang,YANG Xiongwen,et al. Direct manufacturing of non-assembly mechanisms based on selective laser melting[J]. Journal of Mechanical Engineering,2014,50(21):124-132. [6] 杨永强,宋长辉,王迪. 激光选区熔化技术及其在个性化医学中的应用[J]. 机械工程学报,2014,50(21):140-151. YANG Yongqiang,SONG Changhui,WANG Di. Selective laser melting and its applications on personalized medical parts[J]. Journal of Mechanical Engineering,2014,50(21):140-151. [7] YAP C,CHUA C,DONG Zhili,et al. Review of selective laser melting:Materials and applications[J]. Applied Physics Reviews,2015,2(4):1-16. [8] YAN Jujie,SONG Hui,DONG Yangping,et al. High strength (~2000 MPa) or highly ductile (~11%) additively manufactured H13 by tempering at different conditions[J]. Materials Science and Engineering:A,2020,773:138845. [9] DADBAKHSH S,MERTENS R,HAO Liang,et al. Selective laser melting to manufacture "in situ" metal matrix composites:a review[J]. Advanced Engineering Materials,2018,21(3):1801244. [10] FAMODIMU O,STANFORD M,ODUOZA C,et al. Effect of process parameters on the density and porosity of laser melted AlSi10Mg/SiC metal matrix composite[J]. Frontiers of Mechanical Engineering,2018, 13(4):520-527. [11] ZHAO Xuan,GU Dongdong,MA Chenglong,et al. Microstructure characteristics and its formation mechanism of selective laser melting SiC reinforced Al-based composites[J]. Vacuum,2019,160:189-196. [12] GU Dongdong,HAGEDORN Y,MEINERS W,et al. Selective laser melting of in-situ TiC/Ti5Si3 composites with novel reinforcement architecture and elevated performance[J]. Surface and Coatings Technology,2011,205(10):3285-3292. [13] KRAKHMALEV P,YADROITSEV I. Microstructure and properties of intermetallic composite coatings fabricated by selective laser melting of Ti-SiC powder mixtures[J]. Intermetallics,2014,46:147-155. [14] SONG Bo,DONG Shujuan,CODDET C. Rapid in situ fabrication of Fe/SiC bulk nanocomposites by selective laser melting directly from a mixed powder of microsized Fe and SiC[J]. Scripta Materialia,2014, 75:90-93. [15] SONG Bo,DONG Shujuan,CODDET P,et al. Microstructure and tensile behavior of hybrid nano-micro SiC reinforced iron matrix composites produced by selective laser melting[J]. Journal of Alloys and Compounds,2013,579:415-421. [16] BECKER T,DIMITROV D. The achievable mechanical properties of SLM produced Maraging Steel 300 components[J]. Rapid Prototyping Journal,2016, 22(3):487-494. [17] CASATI R,LEMKE J,TUISSI A,et al. Aging behaviour and mechanical performance of 18-Ni 300 steel processed by selective laser melting[J]. Metals,2016,6(9):218. [18] JÄGLE E,CHOI P,VAN HUMBEECK J,et al. Precipitation and austenite reversion behavior of a maraging steel produced by selective laser melting[J]. Journal of Materials Research,2014,29(17):2072-2079. [19] TAN Chaolin,ZHOU Kesong,KUANG Min,et al. Microstructural characterization and properties of selective laser melted maraging steel with different build directions[J]. Science and Technology of Advanced Materials,2018,19(1):746-758. [20] TAN Chaolin,ZHOU Kesong,MA Wenyou,et al. Research progress of laser additive manufacturing of maraging steels[J]. Acta Metallurgica Sinica,2020,56(1):36-52. [21] KANG Nan,MA Wenyou,LI Fuhai,et al. Microstructure and wear properties of selective laser melted WC reinforced 18Ni-300 steel matrix composite[J]. Vacuum, 2018,154:69-74. [22] KANG Nan,MA Wenyou,HERAUD L,et al. Selective laser melting of tungsten carbide reinforced maraging steel composite[J]. Additive Manufacturing,2018,22:104-110. [23] YAN Xingchen,HUANG Chunjie,CHEN Chaoyue,et al. Additive manufacturing of WC reinforced maraging steel 300 composites by cold spraying and selective laser melting[J]. Surface and Coatings Technology,2019,371:161-171. [24] KALOGEROPOULOU S,BAUD L,EUSTATHOPOULOS N. Relationship between wettability and reactivity in Fe/SiC system[J]. Acta Metallurgica et Materialia,1995,43(3):907-912. [25] TOLOCHKO N,LAOUI T,KHLOPKOV Y,et al. Absorptance of powder materials suitable for laser sintering[J]. Rapid Prototyping Journal,2000,6(3):155-160. [26] CHANG Fei,GU Dongdong,DAI Donghua,et al. Selective laser melting of in-situ Al4SiC4+ SiC hybrid reinforced Al matrix composites:Influence of starting SiC particle size[J]. Surface and Coatings Technology,2015,272:15-24. [27] CHEN Chaoyue,XIE Yingchun,YAN Xincheng,et al. Cold sprayed WC reinforced maraging steel 300 composites:Microstructure characterization and mechanical properties[J]. Journal of Alloys and Compounds,2019,785:499-511. [28] DEMIR A,PREVITALI B. Investigation of remelting and preheating in SLM of 18Ni300 maraging steel as corrective and preventive measures for porosity reduction[J]. The International Journal of Advanced Manufacturing Technology,2017,93(5-8):2697-2709. [29] ATAEE A,LI Y,BRANDT M,et al. Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications[J]. Acta Materialia,2018,158:354-368. [30] MERCELIS P,KRUTH J. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal,2006,12(5):254-265. [31] LIU Yang,YANG Yongqiang,WANG Di. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology,2016,87(1):647-656. [32] BUCHBINDER D,MEINERS W,PIRCH N,et al. Investigation on reducing distortion by preheating during manufacture of aluminum components using selective laser melting[J]. Journal of Laser Applications,2014,26(1):12004. [33] WANG Dianzheng,YU Chenfan,MA Jing,et al. Densification and crack suppression in selective laser melting of pure molybdenum[J]. Materials & Design, 2017,129:44-52. [34] SURYAWANSHI J,PRASHANTH K,RAMAMURTY U. Mechanical behavior of selective laser melted 316L stainless steel[J]. Materials Science and Engineering:A, 2017,696:113-121. [35] KUNZE K,ETTER T,GRÄSSLIN J,et al. Texture,anisotropy in microstructure and mechanical properties of IN738LC alloy processed by selective laser melting (SLM)[J]. Materials Science and Engineering:A,2015,620:213-222. [36] OLSON D. Prediction of austenitic weld metal microstructure and properties[J]. Welding Journal,1985,64:281-295. [37] ALMANGOUR B,GRZESIAK D,YANG J M. Selective laser melting of TiB2/H13 steel nanocomposites:Influence of hot isostatic pressing post-treatment[J]. Journal Of Materials Processing Technology,2017,244:344-353. [38] TAN Chaolin,ZHANG Xinyue,DONG Dongdong,et al. In-situ synthesised interlayer enhances bonding strength in additively manufactured multi-material hybrid tooling[J]. International Journal of Machine Tools and Manufacture,2020,155:103592. [39] 谭超林. 选区激光熔化成型马氏体时效钢及其复合、梯度材料研究[D]. 广州:华南理工大学,2019. TAN Chaolin. Selective laser melting of maraging steel and its composite,gradient materials[D]. Guanngzhou:South China University of Technology,2019. [40] LI Xiaopeng,JI Gang,CHEN Zhe,et al. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility[J]. Acta Materialia, 2017,129:183-193. |