[1] EMADI M A, CHITGAR N, OYEWUNMI O A, et al. Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery[J]. Applied Energy, 2020, 261:114384. [2] SANTHANAM S, HEDDRICH M P, RIEDEL M, et al. Theoretical and experimental study of reversible solid oxide cell (r-SOC) systems for energy storage[J]. Energy, 2017, 141:202-214. [3] 龚志远, 朱中琪, 黎子永, 等. 喷墨打印技术制造新能源器件研究进展[J]. 硅酸盐学报, 2021, 49(5):855-866. GONG Zhiyuan, ZHU Zhongqi, LI Ziyong, et al. Research progress on manufacture of new energy devices by inkjet printing[J]. Journal of the Chinese Ceramic Society, 2021, 49(5):855-866. [4] 熊鼎宇, 屈飘, 朱中琪, 等. 陶瓷挤出和喷射增材制造技术研究进展[J]. 机械工程学报, 2021, 57(17):253-262. XIONG Dingyu, QU Piao, ZHU Zhongqi, et al. Research progress on extrusion and jetting-based ceramic additive manufacturing technologies[J]. Journal of Mechanical Engineering, 2021, 57(17):253-262. [5] CHEN Z W, GONG Z Y, LI Z Y, et al. Characterisation of indentation microstructures for porous SOFC cathodes[J]. Ceramics International, 2020, 46(1):803-812. [6] 屈飘, 欧阳竟, 龚志远等. 燃料电池多孔陶瓷电极薄层的喷墨打印制造[J]. 硅酸盐学报, 2020, 48(10):1613-1621. QU Piao, OUYANG Jing, GONG Zhiyuan, et al. Fabrication of porous fuel cell electrode layers via inkjet printing[J]. Journal of the Chinese Ceramic Society, 2020, 48(10):1613-1621. [7] 陈张伟. 多孔陶瓷的增材制造及构性表征与关系研究[J]. 现代技术陶瓷, 2021, 42(Z1):43-63. CHEN Zhangwei. Addictive manufacturing of porous ceramic, structure-property characterization and relationship[J]. Advanced Ceramics, 2021, 42(Z1):43-63. [8] BRETT D J, ATKINSON A, BRANDON N P, et al. Intermediate temperature solid oxide fuel cells[J]. Chemical Society Reviews, 2008, 37(8):1568-1578. [9] SUN J, ZHOU M, WU Q, et al. Characterization of two novel gene cassettes, DFRA27 and AADA16, in a non-O1, non-O139 Vibrio cholerae isolate from China[J]. Clin Microbiol Infect, 2010, 16(8):1125-1129. [10] XIONG D Y, RASAKI S A, LI Y P, et al. Enhanced cathodic activity by tantalum inclusion at B-site of La0.6Sr0.4Co0.4Fe0.6O3 based on structural property tailored via camphor-assisted solid-state reaction[J]. Journal of Advanced Ceramics, 2022, 11(8):1330-1342. [11] BILAL H M, MOTOLA M, QAYYUM S, et al. Recent advancements, doping strategies and the future perspective of perovskite-based solid oxide fuel cells for energy conversion[J]. Chemical Engineering Journal, 2022, 428:132603. [12] JIANG S P. Development of lanthanum strontium cobalt ferrite perovskite electrodes of solid oxide fuel cells-A review[J]. International Journal of Hydrogen Energy, 2019, 44(14):7448-7493. [13] ZHUANG Z C, LI Y H, YU R H, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catalysis, 2022, 5(4):300-310. [14] SETEVICH C, MOGNI L, CANEIRO A, et al. Characterization of the La1-xBaxCoO3-δ(0≤ x ≤ 1) system as cathode material for IT-SOFC[J]. Journal of the Electrochemical Society, 2011, 159(1):B72-B9. [15] SETEVICH C, PRADO F, de FLORIO D Z, et al. Stabilization of the cubic perovskite in the system La1-xBaxCo1-yFeyO3-δ(0.7≤ x ≤ 0.9) and its electrochemical performance as cathode materials for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2014, 247:264-272. [16] HROVAT M, HOLC J, KOLAR D. Thick film ruthenium oxide/yttria-stabilized zirconia-based cathode material for solid oxide fuel cells[J]. Solid State Ionics, 1994, 68(1-2):99-103. [17] ZHOU Q J, WANG F, SHEN Y, et al. Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(8):2174-2181. [18] XIE Z X, FENG X X, ZHANG T F, et al. Improved thermal expansion and electrochemical performance of La1-xSrxFe0.7Ni0.3O3-δ cathodes for intermediate- temperature SOFCs[J]. Solid State Sciences, 2020, 108:106356. [19] LU F, YANG M J, SHI Y J, et al. Application of a negative thermal expansion oxide in SOFC cathode[J]. Ceramics International, 2021, 47(1):1095-1100. [20] ZHANG Y, CHEN B, GUAN D Q, et al. Thermal-expansion offset for high-performance fuel cell cathodes[J]. Nature, 2021, 591(7849):246-251. [21] MITTAL U, TEUSNER M, BRAND H E A, et al. Effect of post-synthesis processing on the electrochemical performance of Y2W3O12[J]. Energy & Fuels, 2023, 37(5):4069-4082. [22] WANG X Y, SI X Q, LI M S, et al. Y2W3O12@SiO2 composite particles for regulating thermal expansion and interfacial reactions in BaZr0.1Ce0.7Y0.1Yb0.1O3-δ/AISI 441 joints[J]. Composites Part B:Engineering, 2022, 242:110108. [23] ZHU Z Q, GONG Z Y, QU P A, et al. Additive manufacturing of thin electrolyte layers via inkjet printing of highly-stable ceramic inks[J]. Journal of Advanced Ceramics, 2021, 10(2):279-290. [24] WIESNER V L, RUESCHHOFF L M, DIAZ-CANO A I, et al. Producing dense zirconium diboride components by room-temperature injection molding of aqueous ceramic suspensions[J]. Ceramics International, 2016, 42(2):2750-2760. [25] DERBY B. Inkjet printing ceramics:From drops to solid[J]. Journal of the European Ceramic Society, 2011, 31(14):2543-2550. [26] ROSEN B A. Progress and opportunities for exsolution in electrochemistry[J]. Electrochem, 2020, 1(1):32-43. [27] HAN H, PARK J, NAM S Y, et al. Lattice strain-enhanced exsolution of nanoparticles in thin films[J]. Nature Communications, 2019, 10(1):1471. [28] QU P, XIONG D Y, ZHU Z Q, et al. Inkjet printing additively manufactured multilayer SOFCs using high quality ceramic inks for performance enhancement[J]. Additive Manufacturing, 2021, 48:102394. [29] HAN G D, NEOH K C, BAE K, et al. Fabrication of lanthanum strontium cobalt ferrite (LSCF) cathodes for high performance solid oxide fuel cells using a low price commercial inkjet printer[J]. Journal of Power Sources, 2016, 306:503-509. [30] KIM M, KIM D H, HAN G D, et al. Lanthanum strontium cobaltite-infiltrated lanthanum strontium cobalt ferrite cathodes fabricated by inkjet printing for high-performance solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2020, 843:155806. [31] CHANG W, KANG E H, JEONG H J, et al. Inkjet printing of perovskite ceramics for high-performance proton ceramic fuel cells[J]. Energy, 2023, 268:126489. [32] ZHANG W W, MENG J L, ZHANG X, et al. Co-incorporating enhancement on oxygen vacancy formation energy and electrochemical property of Sr2Co1+xMo1-xO6-δ cathode for intermediate-temperature solid oxide fuel cell[J]. Solid State Ionics, 2018, 316:20-28. [33] DIGIUSEPPE G, THOMPSON D, GUMECI C, et al. Distribution of relaxation times analysis and interfacial effects of LSCF fired at different temperatures[J]. International Journal of Hydrogen Energy, 2019, 44(49):27067-27078. [34] WANG R, JIN F J, TA L, et al. SrCo1-xMoxO3-δ perovskites as cathode materials for LaGaO3-based intermediate-temperature solid oxide fuel cells[J]. Solid State Ionics, 2016, 288:32-35. [35] CHEN Z W, OUYANG J, LIANG W L, et al. Development and characterizations of novel aqueous-based LSCF suspensions for inkjet printing[J]. Ceramics International, 2018, 44(11):13381-13388 |