• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (10): 302-316.doi: 10.3901/JME.2024.10.302

• 智能决策规划 • 上一篇    下一篇

扫码分享

汽车功能安全:面向敏感指令攻击场景的自主驾驶车辆路径规划风险缓解控制

林晨1,2,3, 魏洪乾1,2,4, 荆威1,2, 张幽彤1,2,3   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 清洁车辆北京市重点实验室 北京 100081;
    3. 北京理工大学长三角研究院 嘉兴 314000;
    4. 汽车测控与安全四川省重点实验室 成都 610039
  • 收稿日期:2023-07-01 修回日期:2023-11-20 出版日期:2024-05-20 发布日期:2024-07-24
  • 作者简介:林晨,男,2000年出生。主要研究方向为智能网联汽车的信息安全及功能安全等。
    E-mail:bitlinchen@qq.com
    魏洪乾(通信作者),男,1992年出生,博士,预聘助理教授,硕士研究生导师。主要研究方向为智能网联汽车的信息安全和汽车动力学控制及功能安全等。
    E-mail:bit_hongqian@126.com
    荆威,男,1999年出生。主要研究方向为智能网联汽车的轨迹跟踪控制等。
    E-mail:jweichris@163.com
    张幽彤,男,1965年出生,博士,教授,博士研究生导师。主要研究方向为智能驾驶汽车内部异构网络轻量化安全防护、智能农机电驱动集成系统与自主驾驶系统等。
    E-mail:youtong@bit.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB3101500)、国家自然科学基金(52202461)、中国博士后自然科学基金(2022TQ0032,2022M710380)、汽车新技术安徽省工程技术研究中心开放基金(QCKJ202202A)和汽车测控与安全四川省重点实验室开放基金(QCCK2023-001)资助项目。

Automotive Functional Safety: Risk Mitigation Control of Path Planning for Autonomous Vehicles towards Sensitive Command Attack Scenarios

LIN Chen1,2,3, WEI Hongqian1,2,4, JING Wei1,2, ZHANG Youtong1,2,3   

  1. 1. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Key Laboratory of Low Emission Vehicles in Beijing, Beijing 100081;
    3. Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314000;
    4. Vehicle Measurement, Control and Safety Key Laboratory of Sichuan Province, Chengdu 610039
  • Received:2023-07-01 Revised:2023-11-20 Online:2024-05-20 Published:2024-07-24

摘要: 为解决敏感动作指令攻击诱导的路径规划失效与跟踪控制失稳问题,提出一种基于状态解耦与实时模型预测控制相结合的自主驾驶车辆路径规划风险缓释控制方法。首先,从汽车的横向、纵向及航向等三个自由度进行风险解耦判断,并引入了网络风险因子和阻断风险因子对汽车可能遭受的敏感指令攻击风险进行量化评估;然后,将风险因子引入模型预测控制中的局部路径规划模块,对其惩罚函数进行实时修正,规划出考虑动态网络攻击风险的局部最优参考路径;此外,还在轨迹跟踪层加入基于阈值驱动的主备冗余总线切换机制,缓解敏感动作指令攻击对汽车操控能力的恶性破坏;最后,引入三种常见的敏感动作集攻击场景进行有效性验证。测试结果表明,在加速动作指令攻击场景和制动动作指令攻击场景下,与没有缓解控制的方案相比,所提方案能够缓解约31%的速度急剧变化,有效地规避汽车的纵向驾驶风险和横向失稳问题;此外,面向转向动作指令攻击时,所提方案可以制止错误的转向过程,阻止汽车发生碰撞事故。

关键词: 智能网联汽车, 自主驾驶, 路径规划, 网络攻击, 主动安全

Abstract: A risk mitigation control strategy for autonomous driving vehicles is proposed based on the state decoupling and real-time model predictive control(MPC) to address the problem of path planning failure and tracking instability resulting from sensitive command attacks. Firstly, the potential risks in the lateral, longitudinal, and heading states are decoupled to design network risk index and network block risk index. These indices quantitatively assess the risk of sensitive command attacks of an autonomous vehicle. Secondly, the network risk index is introduced into the local path planner based on MPC, which real-time modifies the penalty functions and plan the locally optimal reference path with consideration of the dynamic network attack risks. Additionally, a threshold-driven redundant bus switching mechanism is added to the trajectory tracking layer to mitigate the harmful effects of sensitive command attacks on vehicle control ability. Finally, three common scenarios of sensitive command attack sets are used to validate the effectiveness of the proposed strategy. The results show that the proposed strategy can mitigate approximately 31% of sudden speed changes and prevent longitudinal driving risk and lateral instability in the scenarios of acceleration and braking command attacks compared with the non-mitigated scheme. Furthermore, for steering command attacks, the proposed strategy can halt the incorrect steering process and effectively prevent collision accidents.

Key words: intelligent connected vehicles, autonomous driving, path planning, network attack, active safety

中图分类号: