机械工程学报 ›› 2023, Vol. 59 ›› Issue (23): 283-309.doi: 10.3901/JME.2023.23.283
李明星1,2, 岳彩旭1, 刘献礼1, 陈志涛1, 姜志鹏1, 岳大荀1, STEVEN Y L3
收稿日期:
2022-12-09
修回日期:
2023-03-09
发布日期:
2024-02-20
通讯作者:
李明星(通信作者),男,1988年出生,博士研究生。主要研究方向为先进刀具设计与制造技术。E-mail:1910100005@stu.hrbust.edu.cn
作者简介:
岳彩旭,男,1982年出生,博士,教授,博士研究生导师。主要研究方向为切削过程智能化、刀具设计技术等。E-mail:yuecaixu@hrbust.edu.cn;刘献礼,男,1961年出生,博士,教授,博士研究生导师。主要研究方向为金属切削理论及刀具技术、数字化加工及智能制造技术。E-mail:xlliu@hrbust.edu.cn;陈志涛,男,1982年出生,博士研究生。主要研究方向为金属切削机理和工艺优化。E-mail:zhitao19@163.com;姜志鹏,男,1988年出生,博士。主要研究方向为刀具设计制造和数控加工。E-mail:dapeng99@139.com;岳大荀,男,1997年出生,硕士研究生。主要研究方向为刀具空间结构设计、刀具“形-性-用”一体化设计理论与方法。E-mail:1920100002@stu.hrbust.edu.cn;STEVEN Y L,男,1958年出生,博士,教授,博士研究生导师。主要研究方向为智能制造、超精密加工技术。E-mail:steven.liang@me.gatech.edu
基金资助:
LI Mingxing1,2, YUE Caixu1, LIU Xianli1, CHEN Zhitao1, JIANG Zhipeng1, YUE Daxun1, STEVEN Y L3
Received:
2022-12-09
Revised:
2023-03-09
Published:
2024-02-20
摘要: 钛合金材料以轻质、高强、耐腐蚀等优异特性在航空航天领域得到了广泛的应用,但良好的材料属性也为其加工带来难题,尤其对结构复杂的钛合金框架类零件切削,对刀具的设计、使用和性能评价都提出了更高的要求。首先分析了限制钛合金框架类零件切削性能发挥的影响因素,即切削力、切削温度和已加工表面残余应力,并以影响因素为约束总结了钛合金框架类零件加工用整体立铣刀几何结构、表面涂层和基体材料的研究现状;其次针对特定加工场景以影响因素为约束推荐了切削参数;随后将影响因素量化为便于识别统计的评价指标,即切削寿命、效率和表面完整性,进而阐述了刀具切削性能评价的研究进展。最后对整体立铣刀在钛合金框架类零件加工领域的发展与应用进行展望。随着新一代信息技术发展,将进一步推动刀具设计、使用与切削性能发挥的深度融合,助力钛合金框架类零件的高质量、长寿命、高效率切削。
中图分类号:
李明星, 岳彩旭, 刘献礼, 陈志涛, 姜志鹏, 岳大荀, STEVEN Y L. 钛合金框架类零件铣削用立铣刀设计与应用研究进展[J]. 机械工程学报, 2023, 59(23): 283-309.
LI Mingxing, YUE Caixu, LIU Xianli, CHEN Zhitao, JIANG Zhipeng, YUE Daxun, STEVEN Y L. Research on Design and Application of Endmill for Milling Titanium Alloy Frame Parts[J]. Journal of Mechanical Engineering, 2023, 59(23): 283-309.
[1] ANTUNES R A,SALVADOR C A F,OLIVEIRA M C L. Materials selection of optimized titanium alloys for aircraft applications[J]. Materials Research,2018,21:2. https://doi.org/10.1590/1980-5373-mr-2017-0979. [2] DAI Jingjie,ZHU Jiyun,CHEN Chuanzhong,et al. High temperature oxidation behavior and research status of modifications on improving high temperature oxidation resistance of titanium alloys and titanium aluminides:A review[J]. Journal of Alloys and Compounds,2016,685:784-798. [3] BANOTH R,SARKAR R,BHATTACHARJEE A,et al. Effect of boron and carbon addition on microstructure and mechanical properties of metastable beta titanium alloys[J]. Materials & Design,2015,67:50-63. [4] HE Dehua,LI Dongsheng,LI Xiaoqiang,et al. Optimization on spring back reduction in cold stretch forming of titanium-alloy aircraft skin[J]. Transactions of Nonferrous Metals Society of China,2010,20(12):2350-2357. [5] SINGH P,PUNGOTRA H,KALSI N S. On the characteristics of titanium alloys for the aircraft applications[J]. Materials Today:Proceedings,2017,4(8):8971-8982. [6] EZUGWU E O,WANG Z M. Titanium alloys and their machinability-a review[J]. Journal of Materials Processing Technology,1997,68(3):262-274. [7] REN Junxue,ZHOU Jinhua,WEI Jianwei. Optimization of cutter geometric parameters in end milling of titanium alloy using the grey-Taguchi method[J]. Advances in Mechanical Engineering,2015,7(2):721093. [8] SHOKRANI A,NEWMAN S T. A new cutting tool design for cryogenic machining of Ti-6Al-4V titanium alloy[J]. Materials,2019,12(3):477. [9] YE D,KOO J,PARK Y,et al. Analysis on the effects of tool rake angle and helix angle of a flat end-mill in the milling of Ti-alloy[J]. Journal of the Korean Society of Manufacturing Technology Engineers,2015,24(5):508-513. [10] 谭靓,张定华,姚倡锋,等. 刀具几何参数对钛合金铣削力和表面完整性的影响[J]. 中国机械工程,2015,26(6):737-742. TAN Liang,ZHANG Dinghua,YAO Changfeng,et al. Influence of tool geometrical parameters on milling force and surface integrity in milling titanium alloy[J]. China Mechanical Engineering,2015,26(6):737-742. [11] 曾婧雯,任军学,尹佳,等. TC18钛合金铣削刀具几何参数优化研究[J]. 航空精密制造技术,2013(6):37-40. ZENG Jingwen,REN Junxue,YIN Jia,et al. Research on tool geometry optimization of TC18 titanium alloy milling[J]. Aviation Precision Manufacturing Technology,2013(6):37-40. [12] REN Junxue,ZHOU Jinhua,ZENG Jingwen. Analysis and optimization of cutter geometric parameters for surface integrity in milling titanium alloy using a modified grey–Taguchi method[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2016,230(11):2114-2128. [13] WYEN C F,JAEGER D,WEGRNER K. Influence of cutting edge radius on surface integrity and burr formation in milling titanium[J]. The International Journal of Advanced Manufacturing Technology,2013,67(1-4):589-599. [14] PRIARONE P C,RIZZUTI S,SETTINERI L,et al. Effects of cutting angle,edge preparation,and nano-structured coating on milling performance of a gamma titanium aluminide[J]. Journal of Materials Processing Technology,2012,212(12):2619-2628. [15] HUANG Panling,LI Jianfeng,SUN Jie,et al. Study on vibration reduction mechanism of variable pitch end mill and cutting performance in milling titanium alloy[J]. The International Journal of Advanced Manufacturing Technology,2013,67(5-8):1385-1391. [16] HUANG Panling,LI Jianfeng,SUN Jie,et al. Milling force vibration analysis in high-speed-milling titanium alloy using variable pitch angle mill[J]. The International Journal of Advanced Manufacturing Technology,2012,58(1-4):153-160. [17] LIU Jianyong,QIAO Lihong,CHEN Wuyi. Cutting force analysis in machining of titanium alloy with solid carbide cutters of different geometry[C]//MATEC Web of Conferences. EDP Sciences,2018,179:02002. [18] LIU Jianyong,SUN Jie,CHEN Wuyi. Influence of wear and tool geometry on the chatter,cutting force,and surface integrity of TB6 titanium alloy with solid carbide cutters of different geometry[J]. Strojniski Vestnik/Journal of Mechanical Engineering,2020,66(12):709-723. [19] LI Mengyu,ZHAO Wei,LI Liang,et al. Study the effect of anti-vibration edge length on process stability of milling thin-walled Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology,2021,113(9):2563-2574. [20] 王启东,刘战强,汤爱民,等. 平头螺旋刃立铣刀切削力预报模型的建立与数值仿真(一)——刀具几何参数对铣削力的影响[J]. 工具技术,2011,45(3):17-22. WANG Qidong,LIU Zhanqiang,TANG Aimin,et al. Milling force predicting modelling and numerical simulation for helical tooth cylindrical milling cutters (Part I:Influence of cutter geometry parameters on milling force)[J]. Tool Engineering,2011,45(3):17-22. [21] 杨蕾,史耀耀,杨巧凤,等. 钛合金TC11铣削力分析与建模[J]. 制造技术与机床,2007(1):35-37. YANG Lei,SHI Yaoyao,YANG Qiaofeng,et al. Cutting force prediction for milling titanium TC11[J]. Metal Cutting Mechanism,2007(1):35-37. [22] AYDIN M,KOKLU U. Analysis of flat-end milling forces considering chip formation process in high-speed cutting of Ti6Al4V titanium alloy[J]. Simulation Modelling Practice and Theory,2020,100:102039. [23] CHEN Ding,ZHANG Xiaojian,XIE Yakun,et al. A unified analytical cutting force model for variable helix end mills[J]. The International Journal of Advanced Manufacturing Technology,2017,92(9):3167-3185. [24] SUN Yujing,SUN Jie,WANG Gaoqi,et al. A modified analytical cutting force prediction model under the tool crater wear effect in end milling Ti6Al4V with solid carbide tool[J]. The International Journal of Advanced Manufacturing Technology,2020,108(11):3475-3490. [25] WU Ge,LI Guangxian,PAN Wencheng,et al. A prediction model for the milling of thin-wall parts considering thermal-mechanical coupling and tool wear[J]. The International Journal of Advanced Manufacturing Technology,2020,107(11):4645-4659. [26] SUN Yujing,SUN Jie,LI Jianfeng. Modeling and experimental study of temperature distributions in end milling Ti6Al4V with solid carbide tool[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2017,231(2):217-227. [27] SU J C,YOUNG K A,MA K,et al. Modeling of residual stresses in milling[J]. The International Journal of Advanced Manufacturing Technology,2013,65(5):717-733. [28] DENG Q,MO R,CHEN Z C,et al. An analytical approach to cutter edge temperature prediction in milling and its application to trochoidal milling[J]. Applied Sciences,2020,10(5):1746. [29] CUI Di,ZHANG Dinghua,WU Baohai,et al. An investigation of tool temperature in end milling considering the flank wear effect[J]. International Journal of Mechanical Sciences,2017,131:613-624. [30] WAN Min,YUAN Heng,MA Yingchao,et al. Determination of optimal geometrical parameters of peripheral mills to achieve good process stability[J]. Advances in Manufacturing,2018,6(3):259-271. [31] WANG Minghai,GAO Lei,ZHENG Yaohui. Prediction of regenerative chatter in the high-speed vertical milling of thin-walled workpiece made of titanium alloy[J]. The International Journal of Advanced Manufacturing Technology,2014,72(5-8):707-716. [32] ZHU Lida,LIU Baoguang,CHEN Hongyu. Research on chatter stability in milling and parameter optimization based on process damping[J]. Journal of Vibration and Control,2018,24(12):2642-2655. [33] GAO Haining,LIU Xianli. Stability research considering non-linear change in the machining of titanium thin-walled parts[J]. Materials,2019,12(13):2083. [34] FENG Jilu,SUN Zhili,JIANG Zenghui,et al. Identification of chatter in milling of Ti-6Al-4V titanium alloy thin-walled workpieces based on cutting force signals and surface topography[J]. The International Journal of Advanced Manufacturing Technology,2016,82(9-12):1909-1920. [35] 魏子淇,王家序,周青华,等. 基于斜角切削模型的铣削加工稳定性研究[J]. 组合机床与自动化加工技术,2017(12):41-45. WEI Ziqi,WANG Jiaxu,ZHOU Qinghua,et al. Milling stability based on oblique cutting model theory[J]. Modular Machine Tool & Automatic Manufacturing Technique,2017(12):41-45. [36] JIANG Shanglei,SUN Yuwen,YUAN Xilin,et al. A second-order semi-discretization method for the efficient and accurate stability prediction of milling process[J]. The International Journal of Advanced Manufacturing Technology,2017,92(1-4):583-595. [37] SIMS N D. Fast chatter stability prediction for variable helix milling tools[J]. Proceedings of the Institution of Mechanical Engineers,Part C:Journal of Mechanical Engineering Science,2016,230(1):133-144. [38] DING Ye,ZHU Limin,ZHANG Xiaojian,et al. Second-order full-discretization method for milling stability prediction[J]. International Journal of Machine Tools and Manufacture,2010,50(10):926-932. [39] QUO Qiang,SUN Yuwen,JIANG Yan. On the accurate calculation of milling stability limits using third-order full-discretization method[J]. International Journal of Machine Tools and Manufacture,2012,62:61-66. [40] DING Ye,ZHU Limin,ZHANG Xiaojian,et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture,2010,50(5):502-509. [41] WU H B,ZHANG S J. 3D FEM simulation of milling process for titanium alloy Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology,2014,71(5-8):1319-1326. [42] PRATAP T,PATRA K,DYAKONOV A. Modeling cutting force in micro-milling of Ti-6Al-4V titanium alloy[J]. Procedia Engineering,2015,129:134-139. [43] WANG Zheda,ZE Xiangbo,YOUSUF Y A,et al. Three-dimensional finite element simulation of high speed milling of titanium alloy Ti6Al4V[C]//Journal of Physics:Conference Series. IOP Publishing,2021,1948(1):012130. [44] CALAMAZ M,LIMIDO J,NOUARI M,et al. Toward a better understanding of tool wear effect through a comparison between experiments and SPH numerical modelling of machining hard materials[J]. International Journal of Refractory Metals and Hard Materials,2009,27(3):595-604. [45] LIU Cen,GOEL S,LLAVORI I,et al. Benchmarking of several material constitutive models for tribology,wear,and other mechanical deformation simulations of Ti6Al4V[J]. Journal of the Mechanical Behavior of Biomedical Materials,2019,97:126-137. [46] CHE Jiangtao,ZHOU Tianfeng,LIANG Zhiqiang,et al. Serrated chip formation mechanism analysis using a modified model based on the material defect theory in machining Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology,2018,96(9-12):3575-3584. [47] TABEI A,ABED F H,VOYIADJIS G Z,et al. Constitutive modeling of Ti-6Al-4V at a wide range of temperatures and strain rates[J]. European Journal of Mechanics-A/Solids,2017,63:128-135. [48] LI Bin. Numerical simulation and thermal analysis in milling of titanium alloy[C]//Advanced Materials Research. Trans Tech Publications Ltd,2012,503:556-559. [49] NIESLONY P,GRZESIK W,HABRAT W. Experimental and simulation investigations of face milling process of Ti-6Al-4V titanium alloy[J]. Advances in Manufacturing Science and Technology,2015,39(1). [50] CHENG Wenyu,OUTEIRO J,COSTES J P,et al. A constitutive model for Ti6Al4V considering the state of stress and strain rate effects[J]. Mechanics of Materials,2019,137:103103. [51] KHAN A S,SUB Y S,KAZMI R. Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys[J]. International Journal of Plasticity,2004,20(12):2233-2248. [52] LIU Rui,MELKOTE S,PUCHA R,et al. An enhanced constitutive material model for machining of Ti-6Al-4V alloy[J]. Journal of Materials Processing Technology,2013,213(12):2238-2246. [53] LI Anhai,ZHAO Jun,PEI Zhiqiang,et al. Simulation-based solid carbide end mill design and geometry optimization[J]. The International Journal of Advanced Manufacturing Technology,2014,71(9-12):1889-1900. [54] 吴春亚,齐彪,王广洲,等. 钛合金加工用立铣刀的参数化建模研究[J]. 航空精密制造技术,2020(1):2. WU Chunya,QI Biao,WANG Guangzhou,et al. Parametric modeling of end milling tool for titanium alloy[J]. Aviation Precision Manufacturing Technology,2020(1):2. [55] 齐彪. 钛合金加工用硬质合金刀具参数化建模及其结构优化研究[D]. 哈尔滨:哈尔滨工业大学,2019. QI Biao. The parametric modeling and structural optimization of cemented carbide tools for machining titanium alloys[D]. Harbin:Harbin Institute of Technology,2019. [56] JAWAID A,SHARIF S,KOKSAL S. Evaluation of wear mechanisms of coated carbide tools when face milling titanium alloy[J]. Journal of Materials Processing Technology,2000,99(1-3):266-274. [57] AN Qinglong,CHEN Jie,TAO Zhengrui,et al. Experimental investigation on tool wear characteristics of PVD and CVD coatings during face milling of Ti-6242S and Ti-555 titanium alloys[J]. International Journal of Refractory Metals and Hard Materials,2020,86:105091. [58] KURAM E. The effect of monolayer TiCN-,AlTiN-,TiAlN-and two layers TiCN+ TiN-and AlTiN+ TiN-coated cutting tools on tool wear,cutting force,surface roughness and chip morphology during high-speed milling of Ti6Al4V titanium alloy[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2018,232(7):1273-1286. [59] Yi J Y,Chen K H,Xu Y C,et al. Performance of AlTiBN and AlTiTaN coatings during milling of titanium[J]. Surface Engineering,2019,35(6):501-506. [60] NIU Qiulin,CHEN Ming,MING Weiwei,et al. Evaluation of the performance of coated carbide tools in face milling TC6 alloy under dry condition[J]. The International Journal of Advanced Manufacturing Technology,2013,64(5):623-631. [61] NIU Qiulin,AN Qinglong,CHEN Ming,et al. Wear mechanisms and performance of coated inserts during face milling of TC11 and TC17 alloys[J]. Machining Science and Technology,2013,17(3):483-495. [62] SRINIVASAN B,RAO M S R,RAO B C. On the development of a dual-layered diamond-coated tool for the effective machining of titanium Ti-6Al-4V alloy[J]. Journal of Physics D:Applied Physics,2016,50(1):015302. [63] THEPSONTHI T,OZEL T. Experimental and finite element simulation based investigations on micro-milling Ti-6Al-4V titanium alloy:Effects of cBN coating on tool wear[J]. Journal of Materials Processing Technology,2013,213(4):532-542. [64] CALISKAN H,KUCUKKOSE M. The effect of aCN/TiAlN coating on tool wear,cutting force,surface finish and chip morphology in face milling of Ti6Al4V superalloy[J]. International Journal of Refractory Metals and Hard Materials,2015,50:304-312. [65] VOLOSOVA M A,FYODOROV S V,OPLESHIN S,et al. Wear resistance and titanium adhesion of cathodic arc deposited multi-component coatings for carbide end mills at the trochoidal milling of titanium alloy[J]. Technologies,2020,8(3):38. [66] 李法庆,邵芳. 基于热力学的硬质合金刀具加工钛合金的研究[J]. 工具技术,2008,42(9):33-35. LI Faqing,SHAO Fang. Machining titanium alloys with carbide tools based on thermodynamics[J]. Tool Engineering,2008,42(9):33-35. [67] 李友生. 硬质合金刀具与Ti6A14V钛合金的化学性能匹配研究[D]. 济南:山东大学,2010. LI Yousheng. Chemical performance math between cemented carbide tools and Ti-6Al-4V alloy[D]. Jinan:Shandong University,2010. [68] KUCZMASZEWSKI J,ZALESKI K,MATUSZKA J,et al. Studies on the effect of mill microstructure upon tool life during slot milling of Ti6Al4V alloy parts[J]. Eksploatacja i Niezawodność,2017,19(4):590-596. [69] 王文广,张贺佳,王全兆,等. 碳化物抑制剂对WC-2.5 TiC-10Co超细晶硬质合金微观组织及力学性能的影响[J]. 材料研究学报,2015,29(12):881-888. WANG Wenguang,ZHANG Hejia,WANG Quanzhao,et al. Effects of carbide inhibitor on microstructures and mechanical properties of ultrafine grained carbide cement WC-2.5TiC-10Co[J]. Chinese Journal of Material Research,2015,29(12):881-888. [70] ZHOU Xiankui,WANG Kai,LI Chensi,et al. Effect of ultrafine gradient cemented carbides substrate on the performance of coating tools for titanium alloy high speed cutting[J]. International Journal of Refractory Metals and Hard Materials,2019,84:105024. [71] ABBASI S A,FENG P,MA Y,et al. Influence of microstructure and hardness on machinability of heat-treated titanium alloy Ti-6Al-4V in end milling with polycrystalline diamond tools[J]. The International Journal of Advanced Manufacturing Technology,2016,86(5):1393-1405. [72] SU Honghua,LIU Peng,FU Yucan,et al. Tool life and surface integrity in high-speed milling of titanium alloy TA15 with PCD/PCBN tools[J]. Chinese Journal of Aeronautics,2012,25(5):784-790. [73] ZAREENA A R,VELDHUIS S C. Tool wear mechanisms and tool life enhancement in ultra-precision machining of titanium[J]. Journal of Materials Processing Technology,2012,212(3):560-570. [74] ZHANG Heng,DANG Jiaqiang,MING Weiwei,et al. Cutting responses of additive manufactured Ti6Al4V with solid ceramic tool under dry high-speed milling processes[J]. Ceramics International,2020,46(10):14536-14547. [75] 韩变枝,陈明,王栋. 钛合金高速铣削的切削力实验研究与建模[J]. 机床与液压,2018,46(17):104-108. HAN Bianzhi,CHEN Ming,WANG Dong. Research and modeling of cutting force on the high speed milling titanium alloy[J]. Machine Tool & Hydraulics,2018,46(17):104-108. [76] 孙鹏程,许小雷,张征,等. 钛合金TC4高速铣削参数对铣削力的影响研究[J]. 机床与液压,2020,48(14):37-40. SUN Pengcheng,XU Xiaolei,ZHANG Zheng,et al. Effect of high speed milling parameters on cutting force of TC4 titanium alloy[J]. Machine Tool & Hydraulics,2020,48(14):37-40. [77] 常文春,易湘斌,李宝栋,等. 高速铣削TB6钛合金切削力和表面粗糙度预测模型[J]. 制造技术与机床,2017(4):102-107. CHANG Wenchun,YI Xiangbin,LI Baodong,et al. Prediction model of cutting force and surface roughness in high -speed milling TB6 titanium alloy[J]. Technology and Test,2017(4):102-107. [78] SAMSUDEENSADHAM S,MOHAN A,KRISHNARAJ V. A research on machining parameters during dry machining of Ti-6Al-4V alloy[J]. Materials Today:Proceedings,2021,46:9354-9360. [79] WU Hongbing,ZHANG Shaojian. Effects of cutting conditions on the milling process of titanium alloy Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology,2015,77(9):2235-2240. [80] WANG Fuzeng,ZHAO Jun,LI Anhai,et al. Three-dimensional finite element modeling of high-speed end milling operations of Ti-6Al-4V[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2014,228(6):893-902. [81] SUN Yujing,SUN Jie,LI Jianfeng,et al. Modeling of cutting force under the tool flank wear effect in end milling Ti6Al4V with solid carbide tool[J]. The International Journal of Advanced Manufacturing Technology,2013,69(9-12):2545-2553. [82] 林琪. 刀具和切削参数对Ti6AI4V立铣加工影响的仿真研究[D]. 济南:山东大学,2012. LIN Qi. Numerical investigations of tools and cutting parameters in end milling Ti6Al4V[D]. Jinan:Shandong University,2012. [83] PATRU E N,PANDURU D,CRACIUNOIU N,et al. Study on the cutting temperature and chips formation during the milling of pure titanium[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd,2018,880:315-320. [84] SUI Shaochun,FENG Pingfa,MOU Wenping. Temperature modeling analysis for milling of titanium alloy[C]//Key Engineering Materials. Trans Tech Publications Ltd,2016,693:928-935. [85] PRAETZAS C,TEPPERNEGG T,MAYR J,et al. Investigation of tool core temperature and mechanical tool load in milling of Ti6Al4V[J]. Procedia CIRP,2018,77:118-121. [86] SUN Yujing,SUN Jie,LI Jianfeng,et al. An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artificial thermocouple[J]. The International Journal of Advanced Manufacturing Technology,2014,70(5-8):765-773. [87] DU Jianbiao,YUE Caixu,LIU Xianli,et al. Transient temperature field model of wear land on the flank of end mills:A focus on time-varying heat intensity and time-varying heat distribution ratio[J]. Applied Sciences,2019,9(8):1698. [88] LIU Jie,REN Chengzu,QIN Xuda,et al. Prediction of heat transfer process in helical milling[J]. The International Journal of Advanced Manufacturing Technology,2014,72(5-8):693-705. [89] WU Baohai,CUI Di,HE Xiaodong,et al. Cutting tool temperature prediction method using analytical model for end milling[J]. Chinese Journal of Aeronautics,2016,29(6):1788-1794. [90] DANIYAN I,FAMESO F,ALE F,et al. Modelling,simulation and experimental validation of the milling operation of titanium alloy (Ti6Al4V)[J]. The International Journal of Advanced Manufacturing Technology,2020,109(7):1853-1866. [91] HUANG Xinchun,YAO Changfeng,ZHANG Dinghua,et al. Simulation of the high-speed milling temperature of titanium alloy Ti-6Al-4V[C]//Advanced Materials Research. Trans Tech Publications Ltd,2011,314:1171-1175. [92] EVDOKIMOV D V,SKURATOV D L,FEDOROV D G. Research of thermal fields in the tools under end milling of titanium alloy BT6 with cooling[J]. Life Science Journal,2014,11(12):486-490. [93] SUI S C,FENG P F. The influences of tool wear on Ti6Al4V cutting temperature and burn defect[J]. The International Journal of Advanced Manufacturing Technology,2016,85(9):2831-2838. [94] CHEN L,EI-WARDANY T I,HARRIS W C. Modelling the effects of flank wear land and chip formation on residual stresses[J]. CIRP Annals,2004,53(1):95-98. [95] YANG Y,LI M,LI K R. Comparison and analysis of main effect elements of machining distortion for aluminum alloy and titanium alloy aircraft monolithic component[J]. The International Journal of Advanced Manufacturing Technology,2014,70(9-12):1803-1811. [96] YANG Dong,LIU Zhanqiang,REN Xiaoping,et al. Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V[J]. International Journal of Mechanical Sciences,2016,108:29-38. [97] YANG Dong,XIAO Xiao,LIU Yulei,et al. Peripheral milling-induced residual stress and its effect on tensile–tensile fatigue life of aeronautic titanium alloy Ti-6Al-4V[J]. The Aeronautical Journal,2019,123(1260):212-229. [98] HUANG Xinda,ZHANG Xiaoming,DING Han. An analytical model of residual stress for flank milling of Ti-6Al-4V[J]. Procedia CIRP,2015,31:287-292. [99] YAO Changfeng,WU Daoxia,TAN Liang,et al. Effects of cutting parameters on surface residual stress and its mechanism in high-speed milling of TB6[J]. Proceedings of the Institution of Mechanical Engineers,Part B:Journal of Engineering Manufacture,2013,227(4):483-493. [100] WU Daoxia,YAO Changfeng,TAN Liang,et al. Experimental study on surface integrity in high-speed end milling of titanium alloy TB6[C]//Applied Mechanics and Materials. Trans Tech Publications Ltd,2013,328:867-871. [101] WU Qiong,XIE Dongjian,SI Yu,et al. Simulation analysis and experimental study of milling surface residual stress of Ti-10V-2Fe-3Al[J]. Journal of Manufacturing Processes,2018,32:530-537. [102] JIANG Xiaohui,LI Beizhi,YANG Jianguo,et al. An approach for analyzing and controlling residual stress generation during high-speed circular milling[J]. The International Journal of Advanced Manufacturing Technology,2013,66(9-12):1439-1448. [103] LIU Zhibo,YUE Caixu,LI Xiaochen,et al. Research on tool wear based on 3D FEM simulation for milling process[J]. Journal of Manufacturing and Materials Processing,2020,4(4):121. [104] SALONITIS K,KOLIOS A. Force-based reliability estimation of remaining cutting tool life in titanium milling[J]. The International Journal of Advanced Manufacturing Technology,2020,106(7):3321-3333. [105] JI Wei,LIU Xianli,WANG Lihui,et al. Experimental evaluation of polycrystalline diamond (PCD) tool geometries at high feed rate in milling of titanium alloy TC11[J]. The International Journal of Advanced Manufacturing Technology,2015,77(9-12):1549-1555. [106] ARAUJO A C,FROMENTIN G,BLANDENET P. Investigation on PCD cutting edge geometry for Ti6Al4V high-feed milling[J]. The International Journal of Advanced Manufacturing Technology,2020,111(5):1785-1796. [107] LI Anhai,ZHAO Jun,WANG Dong,et al. Failure mechanisms of a PCD tool in high-speed face milling of Ti–6Al–4V alloy[J]. The International Journal of Advanced Manufacturing Technology,2013,67(9-12):1959-1966. [108] SHARIF S,MOHRUNI A S,NOORDIN M. Modeling of tool life when end milling on titanium alloy (Ti-6Al-4V) using response surface methodology[C]//Proceedings of the 1st International Conference & 7th AUN/SEED-Net Fieldwise Seminar on Manufacturing and Material Processing. Department of Engineering Design & Manufacture,University of Malaya,2006:127-132. [109] MOHRUNI A S,SHARIF S,NOORDIN M,et al. Application of response surface methodology in the development of tool life prediction models when end milling Ti-6Al4V[C]//Proceeding of The 10th International Conference on Quality in Research (QIR). Faculty of Engineering,University of Indonesia,2007(20):1-6. [110] GUO Kai,YANG Bin,SUN Jie,et al. Investigation on the tool wear model and equivalent tool life in end milling titanium alloy Ti6Al4V[C]//International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers,2018,51388:V004T03A033. [111] XU F,ZHU J J,WU X,et al. Parameter optimization of milling Ti6Al4V using GA approach[C]//Key Engineering Materials. Trans Tech Publications Ltd,2010,426:1-4. [112] SHOKRANI A,AL-SAMARRAI I,NEWMAN S T. Hybrid cryogenic MQL for improving tool life in machining of Ti-6Al-4V titanium alloy[J]. Journal of Manufacturing Processes,2019,43:229-243. [113] GINTA T L,AMIN A. Cutting force and tool life models in end milling titanium alloy Ti-4Al-4V with thermally-assisted machining[J]. International Journal of Mechanical Computational and Manufacturing Research,2012,1:1-5. [114] VANSH D P,PATEL D,PATEL M. Effect of cutting parameters on the surface roughness and MRR of titanium alloys using VMC[J]. Materials Today: Proceedings,2018,18:2191-2196. [115] HASHMI K H,ZAKRIA G,RAZA M B,et al. Optimization of process parameters for high-speed machining of Ti-6Al-4V using response surface methodology[J]. The International Journal of Advanced Manufacturing Technology,2016,85(5):1847-1856. [116] SAHU N K,ANDHARE A B. Modelling and multiobjective optimization for productivity improvement in high-speed milling of Ti-6Al-4V using RSM and GA[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering,2017,39(12):5069-5085. [117] SAVILOV A,PYATYKH A,NIKITENKO A. Axial contact points method for improving end-milling productivity[J]. Materials Today:Proceedings,2021,38:1505-1507. [118] WEI Xudong,SUN Qingzhen,LIU Xianli,et al. Research on parallel distributed clustering algorithm applied to milling parameter optimization[J]. The International Journal of Advanced Manufacturing Technology,2022,120:7895-7904. [119] YUE Daxun,YUE Caixu,LIU Xianli,et al. Analysis of cutting performance of the tool based on FEM and grey-fuzzy analytic hierarchy process[J]. The International Journal of Advanced Manufacturing Technology,2022,118:2745-2758. [120] SUN J,GUO Y B. A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V[J]. Journal of Materials Processing Technology,2009,209(8):4036-4042. [121] WANG Fuzeng,ZHAO Jun,LI Anhai,et al. Experimental study on cutting forces and surface integrity in high-speed side milling of Ti-6Al-4V titanium alloy[J]. Machining Science and Technology,2014,18(3):448-463. [122] SAFARI H,SHARIF S,IZMAN S,et al. Surface integrity characterization in high-speed dry end milling of Ti-6Al-4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology,2015,78(1-4):651-657. [123] YANG Houchuan,CHEN Zhitong,ZHOU Zitong. Influence of cutting speed and tool wear on the surface integrity of the titanium alloy Ti-1023 during milling[J]. The International Journal of Advanced Manufacturing Technology,2015,78(5-8):1113-1126. [124] YAO C F,TAN L,REN J X,et al. Surface integrity and fatigue behavior for high-speed milling Ti-10V-2Fe-3Al titanium alloy[J]. Journal of Failure Analysis and Prevention,2014,14(1):102-112. [125] MOUSSAOUI K,MOUSSEIGNE M,SENATORE J,et al. Influence of milling on the fatigue lifetime of a Ti6Al4V titanium alloy[J]. Metals,2015,5(3):1148-1162. [126] ZHAO Wei,REN Fei,IQBAL A,et al. Effect of liquid nitrogen cooling on surface integrity in cryogenic milling of Ti-6Al-4V titanium alloy[J]. The International Journal of Advanced Manufacturing Technology,2020,106(3):1497-1508. [127] YANG D,LIU Z. Surface integrity generated with peripheral milling and the effect on low-cycle fatigue performance of aeronautic titanium alloy Ti-6Al-4V[J]. The Aeronautical Journal,2018,122(1248):316-332. [128] 陈建岭,孙杰,李剑峰. 钛合金铣削加工参数多目标优化研究[J]. 中国机械工程,2014,25(2):169-173. CHEN Jianling,SUN Jie,LI Jianfeng. Multi-objective optimization of cutting parameters during milling of titanium alloy[J]. China Mechanical Engineering,2014,25(2):169-173. [129] 王海艳,秦旭达,任成祖. 基于Pareto遗传算法的螺旋铣加工参数优化[J]. 中国机械工程,2012,23(17):2058-2061. WANG Haiyan,QIN Xuda,REN Chengzu. Optimization of cutting parameters in helical milling process based on pareto genetic algorithm[J]. China Mechanical Engineering,2012,23(17):2058-2061. [130] ESCAMILLA SALAZAR I G,TORRES TREVINO L M,GONZALEZ ORTIZ B,et al. Machining optimization using swarm intelligence in titanium (6Al 4V) alloy[J]. The International Journal of Advanced Manufacturing Technology,2013,67(1-4):535-544. [131] ZHAO Wei,WANG Shengzhang,HAN Zhiwei,et al. Cutting performance evaluation of end mills for titanium aircraft components[J]. Procedia CIRP,2015,35:1-7. [132] LI Jun,YANG Xiaoyong,REN Chengzu,et al. Multiobjective optimization of cutting parameters in Ti-6Al-4V milling process using nondominated sorting genetic algorithm-II[J]. The International Journal of Advanced Manufacturing Technology,2015,76(5-8):941-953. [133] DING Songlin,IZAMSHAH RA R,MO J,et al. The development of an economic model for the milling of titanium alloys[C]//Key Engineering Materials. Trans Tech Publications Ltd,2011,458:362-367. [134] BACH P,TRMAL G,ZEMAN P,et al. High performance titanium milling at low cutting speed[J]. Procedia CIRP,2012,1:226-231. [135] XIANG Guoqi,ZHANG Qi. Multi-object optimization of titanium alloy milling process using support vector machine and NSGA-II algorithm[J]. International Journal of Simulation Systems,Science & Technology,2016,17(38):35.1-35.6. [136] LIBRANTZ A F H,COPPINI N L,BAPTISTA E A,et al. Genetic algorithm applied to investigate cutting process parameters influence on workpiece price formation[J]. Materials and Manufacturing Processes,2011,26(3):550-557. [137] CONRADIE P J T,OOSTHUIZEN G A,DIMITROV D M,et al. Effect of milling strategy and tool geometry on machining cost when cutting titanium alloys[J]. South African Journal of Industrial Engineering,2015,26(3):137-151. [138] CONRADIE P J,UHEIDA E H,OOSTHUIZEN G A,et al. Evaluating the effect of milling strategy on process efficiency in machining titanium alloys-a cost modelling approach[J]. Journal for New Generation Sciences,2020,18(2):1-15. [139] AGRAWAL C,WADHWA J,PITRODA A,et al. Comprehensive analysis of tool wear,tool life,surface roughness,costing and carbon emissions in turning Ti-6Al-4V titanium alloy:Cryogenic versus wet machining[J]. Tribology International,2021,153:106597. [140] SINGH R,DUREJA J S,DOGRA M,et al. Evaluating the sustainability pillars of energy and environment considering carbon emissions under machining of Ti-3Al-2.5 V[J]. Sustainable Energy Technologies and Assessments,2020,42:100806. [141] JAMIL M,ZHAO Wei,HE Ning,et al. Sustainable milling of Ti-6Al-4V:A trade-off between energy efficiency,carbon emissions and machining characteristics under MQL and cryogenic environment[J]. Journal of Cleaner Production,2021,281:125374. [142] 毛新华,黄婷婷. 智能化的切削参数优化系统设计[J]. 制造技术与机床,2010(4):48-50. MAO Xinhua,HUANG Tingting. Design an intelligent system to optimize cutting parameters[J]. Manufacturing Technology & Machine Tool,2010(4):48-50. [143] 王京刚. 钛合金切削参数优化及数据库系统开发[D]. 沈阳:沈阳航空航天大学,2014. WANG Jinggang. Cutting parameters optimization of titanium alloy and database system development[D]. Shenyang:Shenyang Aerospace University,2014. [144] 刘丽娟,吕明,武文革. 高速切削参数优化与数据库系统的研究[J]. 机床与液压,2016(3):81-85. LIU Lijuan,Lü Ming,WU Wenge. Optimization of cutting parameter in high speed machining and research of the HSM database system[J]. Machine Tool & Hydraulics,2016(3):81-85. [145] JI Wei,LIU Xianli,LI Kai,et al. CSPAID:cutting tool “shape-performance-application” integrating design approach[C]//Materials Science Forum. Trans Tech Publications Ltd,2014,800:470-474. [146] JI Wei,ZHAO Zemin,LIU Xianli. Tool shape-performance-application integrated design approach:a development and a numerical validation[J]. The International Journal of Advanced Manufacturing Technology,2018,94(5-8):1711-1717. |
[1] | 殷振, 张坤, 戴晨伟, 程敬彩, 徐海龙, 李华. 超声椭圆振动磨削SiC陶瓷的砂轮磨损与磨削性能研究[J]. 机械工程学报, 2024, 60(9): 57-74. |
[2] | 陈守峰, 王成勇, 李伟秋, 丁峰, 卢耀安, 周玉海. 超声振动铣削加工石墨材料去除机理与加工表面质量评价[J]. 机械工程学报, 2024, 60(9): 86-96. |
[3] | 郑开魁, 赵信哲, 牟刚, 任志英. 超声波滚压强化TC11钛合金的表面质量与摩擦磨损性能[J]. 机械工程学报, 2024, 60(9): 137-151. |
[4] | 李继成, 陈广俊, 许金凯, 于化东. C/SiC复合材料激光超声复合微切削材料损伤机理与表面质量研究[J]. 机械工程学报, 2024, 60(9): 189-205. |
[5] | 岳晓明, 臧烁, 赵永华, 刘为东, 尹瀛月, 张勤河. 高品质超大深径比小孔电火花电解复合加工实验研究[J]. 机械工程学报, 2024, 60(9): 374-382. |
[6] | 杨树财, 韩佩, 佟欣, 刘献礼, 张晓辉. 刀具介观几何特征成形技术及其作用研究[J]. 机械工程学报, 2024, 60(5): 317-351. |
[7] | 邓聪颖, 邓子豪, 林丽君, 陈翔, 马莹, 禄盛. 基于迁移学习的变刀具-刀柄夹持状态下数控铣削稳定性预测研究[J]. 机械工程学报, 2024, 60(3): 296-304. |
[8] | 张富能, 林志伟, 薛勇, 李坰其, 傅建中. 基于游动矢量球头立铣刀刃磨研究[J]. 机械工程学报, 2024, 60(17): 349-356. |
[9] | 宋阳, 曹华军, 张金, 刘磊, 张琼之. 纤维随机分布CFRP高速铣削比能模型与表面质量优化[J]. 机械工程学报, 2024, 60(1): 65-74. |
[10] | 岳晓明, 臧烁, 徐作珂, 张勤河, 张建华, 霍孟友. 基于6自由度串联机器人的电火花铣削加工轨迹规划及伺服控制策略研究[J]. 机械工程学报, 2023, 59(9): 20-27. |
[11] | 冯伯华, 栾志强, 张若冲, 夏雨, 姚伟强, 胡晓冬, 许雪峰. 电渗效应对水基切削液在刀-屑界面渗透润滑影响机理的实验研究[J]. 机械工程学报, 2023, 59(9): 320-334. |
[12] | 彭小强, 李煌, 王跃明, 关朝亮, 胡皓, 赖涛, 徐超. 化学镀NiP的凸面闪耀光栅超精密切削特性研究[J]. 机械工程学报, 2023, 59(21): 121-130. |
[13] | 丁明娜, 刘献礼, 岳彩旭, 范梦超, 顾浩. 面向智能制造过程的刀具设计、制备与管控技术[J]. 机械工程学报, 2023, 59(19): 429-459. |
[14] | 王可, 周平, 闫英, 张超, 郭东明. 铜表面脉冲电化学射流加工的定域性和粗糙度分析[J]. 机械工程学报, 2022, 58(7): 258-266. |
[15] | 王敏杰, 王阳, 魏兆成, 段春争. 切削过程绝热剪切带的滑移线场研究[J]. 机械工程学报, 2022, 58(7): 284-294. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||