机械工程学报 ›› 2023, Vol. 59 ›› Issue (2): 151-168.doi: 10.3901/JME.2023.02.151
王震坡1,2,3,4, 王秋诗1,2, 刘鹏1,2,3,4, 张照生1,2,3,4
收稿日期:
2022-01-28
修回日期:
2022-09-25
出版日期:
2023-01-20
发布日期:
2023-03-30
通讯作者:
刘鹏(通信作者),男,1983年出生,博士,副教授,硕士研究生导师。主要研究方向为新能源汽车大数据分析。E-mail:bitliupeng@bit.edu.cn
作者简介:
王震坡,男,1976年出生,博士,教授,博士研究生导师。主要研究方向为动力电池成组理论与新能源汽车大数据分析。E-mail:wangzhenpo@bit.edu.cn;王秋诗,男,1994年出生,博士研究生。主要研究方向为新能源汽车动力电池健康管理与新能源汽车大数据分析。E-mail:wangqs_bit@163.com;张照生,男,1984年出生,博士,副教授,硕士研究生导师。主要研究方向为新能源汽车大数据分析。E-mail:zhangzhaosheng@bit.edu.cn
基金资助:
WANG Zhenpo1,2,3,4, WANG Qiushi1,2, LIU Peng1,2,3,4, ZHANG Zhaosheng1,2,3,4
Received:
2022-01-28
Revised:
2022-09-25
Online:
2023-01-20
Published:
2023-03-30
摘要: 动力电池健康状态估计是电池管理系统关键算法之一,对提高动力电池能量利用效率、降低电池热失控风险,以及动力电池的维保和残值评估具有重要意义。对比分析试验法、模型法、数据驱动法的优势和不足,并以数据驱动方法为核心,分别从动力电池健康状态数据集构建、健康状态特征参数提取、健康状态估计模型三个方面对现阶段健康状态估计方法的理论基础和技术方案进行综述。总结常用的大数据采集方法以及数据预处理方法,明确大数据在健康状态评估中的意义。比较现有健康状态特征提取方法,对其优劣以及适用场景做了分析。阐述不同健康状态估计模型的基本原理,提出模型融合是未来技术发展方向。最后,面向未来大数据实车应用场景,对动力电池健康状态估计方面存在的问题和发展前景进行了总结和展望。
中图分类号:
王震坡, 王秋诗, 刘鹏, 张照生. 大数据驱动的动力电池健康状态估计方法综述[J]. 机械工程学报, 2023, 59(2): 151-168.
WANG Zhenpo, WANG Qiushi, LIU Peng, ZHANG Zhaosheng. Review on Techniques for Power Battery State of Health Estimation Driven by Big Data Methods[J]. Journal of Mechanical Engineering, 2023, 59(2): 151-168.
[1] 孙振宇, 王震坡, 刘鹏, 等. 新能源汽车动力电池系统故障诊断研究综述[J]. 机械工程学报, 2021, 57(14):87-104. SUN Zhenyu, WANG Zhenpo, LIU Peng, et al. Overview of fault diagnosis in new energy vehicle power battery system[J]. Journal of Mechanical Engineering, 2021, 57(14):87-104. [2] 中国工程科技发展战略研究院. 中国战略性新兴产业发展报告(2019)[M]. 北京:科学出版社, 2018. Chinese Institute of Engineering Development Strategies. Developing report on China's strategic emerging industries (2019)[M]. Beijing:Science Press, 2018. [3] 梅宏. 大数据发展现状与未来趋势[J]. 交通运输研究, 2019, 5(5):1-11. MEI Hong. Current situation and future trends of big data development[J]. Transport Research, 2019, 5(5):1-11. [4] WANG Z, HONG J, LIU P, et al. Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles[J]. Applied Energy, 2017, 196:289-302. [5] HU X, XU L, LIN X, et al. Battery lifetime prognostics[J]. Joule, 2020, 4(2):310-346. [6] LI Y, LIU K, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries:A review[J]. Renewable and Sustainable Energy Reviews, 2019, 113:109254. [7] 张永志. 车用锂离子动力电池健康状态识别与剩余寿命预测[D]. 北京:北京理工大学, 2018. ZHANG Yongzhi. State of health identification and remaining useful life prediction of lithium-ion batteries for electric vehicles[D]. Beijing:Beijing Institute of Technology, 2018. [8] MARKEVICH E, SALITRA G, AURBACH D. Fluoroethylene carbonate as an important component for the formation of an effective solid electrolyte interphase on anodes and cathodes for advanced Li-ion batteries[J]. ACS Energy Letters, 2017, 2(6):1337-1345. [9] SHE C, WANG Z, SUN F, et al. Battery aging assessment for real-world electric buses based on incremental capacity analysis and radial basis function neural network[J]. IEEE Transactions on Industrial Informatics, 2020, 16(5):3345-3354. [10] LI X, WANG Z, YAN J. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421:56-67. [11] 胡晓松, 唐小林. 电动车辆锂离子动力电池建模方法综述[J]. 机械工程学报, 2017, 53(16):20-31. HU Xiaosong, TANG Xiaolin. Review of modeling techniques for lithium-ion traction batteries in electric vehicles[J]. Journal of Mechanical Engineering, 2017, 53(16):20-31. [12] GUO X, KANG L, YAO Y, et al. Joint estimation of the electric vehicle power battery state of charge based on the least squares method and the Kalman filter algorithm[J]. Energies, 2016, 9(2):100. [13] ZOU Y, HU X, MA H, et al. Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles[J]. Journal of Power Sources, 2015, 273:793-803. [14] HE H, XIONG R, GUO H. Online estimation of model parameters and state-of-charge of LiFePO4 batteries in electric vehicles[J]. Applied Energy, 2012, 89(1):413-420. [15] QIUTING W, YINZHU J, YUNHAO L. State of health estimation for lithium-ion battery based on D-UKF[J]. International Journal of Hybrid Information Technology, 2015, 8(7):55-70. [16] CHEN C, XIONG R, SHEN W. A Lithium-ion battery-in-the-loop approach to test and validate multiscale dual H infinity filters for state-of-charge and capacity estimation[J]. IEEE Transactions on Power Electronics, 2018, 33(1):332-342. [17] XIONG R, ZHANG Y, HE H, et al. A double-scale, particle-filtering, energy state prediction algorithm for lithium-ion batteries[J]. IEEE Transactions on Industrial Electronics, 2018, 65(2):1526-1538. [18] CHU A, ALLAM A, ARENAS A, et al. Stochastic capacity loss and remaining useful life models for lithium-ion batteries in plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2020, 478:228991. [19] SCHWUNK S, ARMBRUSTER N, STRAUB S, et al. Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries[J]. Journal of Power Sources, 2013, 239:705-710. [20] HU C, YOUN B D, CHUNG J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J]. Applied Energy, 2012, 92:694-704. [21] ZHENG Y, OUYANG M, LU L, et al. Understanding aging mechanisms in lithium-ion battery packs:From cell capacity loss to pack capacity evolution[J]. Journal of Power Sources, 2015, 278:287-295. [22] HU, CHE Y, LIN X, X, et al. Battery health prediction using fusion-based feature selection and machine learning[J]. IEEE Transactions on Transportation Electrification, 2021, 7(2):382-392. [23] 顾荣. 大数据处理技术与系统研究[D]. 南京:南京大学, 2016. GU Rong. Research on techniques and systems for big data processing[D]. Nanjing:Nanjing University, 2016. [24] ULRICH L. Exclusive:GM Can Manage an EV's Batteries Wirelessly-and Remotely[EB/OL]. https://spectrum.ieee.org/cars-that-think/energy/batteries-storage/ieee-spectrum-exclusive-gm-can-manage-an-evs-batteries-wirelesslyand-remotely. 2020. [25] 佘承其, 张照生, 刘鹏, 等. 大数据分析技术在新能源汽车行业的应用综述——基于新能源汽车运行大数据[J]. 机械工程学报, 2019, 55(20):3-16. SHE Chengqi, ZHANG Zhaosheng, LIU Peng, et al. Overview of the application of big data analysis technology in new energy vehicle industry:Based on operating big data of new energy vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20):3-16. [26] KLASS V, BEHM M, LINDBERGH G, et al. Evaluating real-life performance of lithium-ion battery packs in electric vehicles[J]. Journal of The Electrochemical Society, 2012, 159(11):A1856-A1860. [27] YOU G, PARK S, OH D. Real-time state-of-health estimation for electric vehicle batteries:A data-driven approach[J]. Applied Energy, 2016, 176:92-103. [28] FAN J, ZOU Y, ZHANG X. Quantifying electric vehicle battery's ohmic resistance increase caused by degradation from on-board data[C]//IFAC-PapersOnLine, 2019:297-302. [29] 樊杰. 锂离子动力电池实车使用行为分析及老化状态研究[D]. 北京:北京理工大学, 2019. FAN Jie. Usage pattern analysis and state of health research of lithium-ion power battery[D]. Beijing:Beijing Institute of Technology, 2019. [30] SAHA B, GOEBEL K. "Battery Data Set", NASA Ames Prognostics Data Repository[EB/OL]. http://ti.arc.nasa.gov/project/prognostic-data-repository, NASA Ames Research Center, Moffett Field, CA. 2007. [31] SAXENA S, HENDRICKS C, PECHT M. Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges[J]. Journal of Power Sources, 2016, 327:394-400. [32] ZHENG F, XING Y, JIANG J, et al. Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries[J]. Applied Energy, 2016, 183:513-525. [33] BIRKL C. "Oxford Battery Degradation Dataset 1, " in Long term battery ageing tests of 8 Kokam (SLPB533459H4) 740 mAh lithium-ion pouch cells[EB/OL]. University of Oxford. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac. 2017. [34] Sandia National Laboratories. Battery cell testing data archive[EB/OL]. https://www.sandia.gov/energystoragesafety-ssl/research-development/research-data-repository/. 2017. [35] 王震坡, 刘鹏, 张照生. 新能源汽车大数据分析与应用技术[M]. 北京:机械工业出版社, 2018. WANG Zhenpo, LIU Peng, ZHANG Zhaosheng. Analysis and application technology of big data for EVs[M]. Beijing:China Machine Press, 2018. [36] 崔丁松. 基于大数据的纯电动汽车生态驾驶行为评估[D]. 北京:北京理工大学, 2019. CUI Dingsong. Research on eco-driving behavior evaluation of battery electric vehicle based on big data[D]. Beijing:Beijing Institute of Technology, 2019. [37] 赵洋. 基于大数据的电动汽车动力电池系统故障诊断方法研究[D]. 北京:北京理工大学, 2018. ZHAO Yang. Research on fault diagnosis methods of electric vehicle power battery system based on big data[D]. Beijing:Beijing Institute of Technology, 2018. [38] LIANG K, ZHANG Z, LIU P, et al. Data-driven ohmic resistance estimation of battery packs for electric vehicles[J]. Energies, 2019, 12(24):4772. [39] SUN Z, LIU P, WANG Z. Real-time fault diagnosis method of battery system based on Shannon entropy[J]. Energy Procedia, 2017, 105:2354-2359. [40] DUBARRY M, LIAW B Y, CHEN M, et al. Identifying battery aging mechanisms in large format Li ion cells[J]. Journal of Power Sources, 2011, 196(7):3420-3425. [41] 马泽宇, 姜久春, 王占国, 等. 基于容量增量分析的石墨负极磷酸铁锂电池SOC估算方法研究[J]. 汽车工程, 2014(12):1439-1444. MA Zeyu, JIANG Jiuchun, WANG Zhanguo, et al. A research on SOC estimation for LiFePO4 battery with graphite negative electrode based on incremental capacity analysis[J]. Automotive Engineering, 2014(12):1439-1444. [42] XIONG R, LI L, TIAN J. Towards a smarter battery management system:A critical review on battery state of health monitoring methods[J]. Journal of Power Sources, 2018, 405:18-29. [43] HAN X, OUYANG M, LU L, et al. A comparative study of commercial lithium ion battery cycle life in electric vehicle:Capacity loss estimation[J]. Journal of Power Sources, 2014, 268:658-669. [44] HE J, WEI Z, BIAN X, et al. State-of-health estimation of lithium-ion batteries using incremental capacity analysis based on voltage-capacity model[J]. IEEE Transactions on Transportation Electrification, 2020, 6(2):417-426. [45] LI Y, ABDEL-MONEM M, GOPALAKRISHNAN R, et al. A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter[J]. Journal of Power Sources, 2018, 373:40-53. [46] WENG C, CUI Y, SUN J, et al. On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression[J]. Journal of Power Sources, 2013, 235:36-44. [47] TANG X, ZOU C, YAO K, et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources, 2018, 396:453-458. [48] GOH T, PARK M, SEO M, et al. Capacity estimation algorithm with a second-order differential voltage curve for Li-ion batteries with NMC cathodes[J]. Energy, 2017, 135:257-268. [49] WANG L, PAN C, LIU L, et al. On-board state of health estimation of LiFePO4 battery pack through differential voltage analysis[J]. Applied Energy, 2016, 168:465-472. [50] BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells:1. Technique and application[J]. Journal of Power Sources, 2005, 139(1-2):295-303. [51] SCHIFFER Z J, CANNARELLA J, ARNOLD C B. Strain derivatives for practical charge rate characterization of lithium ion electrodes[J]. Journal of The Electrochemical Society, 2015, 163(3):A427-A433. [52] LI X, WANG Z, ZHANG L, et al. State-of-health estimation for Li-ion batteries by combing the incremental capacity analysis method with grey relational analysis[J]. Journal of Power Sources, 2019(410-411):106-114. [53] WU B, YUFIT V, MERLA Y, et al. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries[J]. Journal of Power Sources, 2015, 273:495-501. [54] MERLA Y, WU B, YUFIT V, et al. Novel application of differential thermal voltammetry as an in-depth state-of-health diagnosis method for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307:308-319. [55] MERLA Y, WU B, YUFIT V, et al. Extending battery life:A low-cost practical diagnostic technique for lithium-ion batteries[J]. Journal of Power Sources, 2016, 331:224-231. [56] CANNARELLA J, ARNOLD C B. State of health and charge measurements in lithium-ion batteries using mechanical stress[J]. Journal of Power Sources, 2014, 269:7-14. [57] PEABODY C, ARNOLD C B. The role of mechanically induced separator creep in lithium-ion battery capacity fade[J]. Journal of Power Sources, 2011, 196(19):8147-8153. [58] KHALEGHI S, KARIMI D, BEHESHTI S H, et al. Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network[J]. Applied Energy, 2021, 282:116159. [59] LI Y, ZOU C, BERECIBAR M, et al. Random forest regression for online capacity estimation of lithium-ion batteries[J]. Applied Energy, 2018, 232:197-210. [60] RICHARDSON R R, BIRKL C R, OSBORNE M A, et al. Gaussian process regression for in situ capacity estimation of lithium-ion batteries[J]. IEEE Transactions on Industrial Informatics, 2019, 15(1):127-138. [61] GUO P, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412:442-450. [62] CHEN Z, SUN M, SHU X, et al. Online state of health estimation for lithium-ion batteries based on support vector machine[J]. Applied Sciences, 2018, 8(6):925. [63] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19):3968-3978. GUO Yongfang, HUANG Kai, LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19):3968-3978. [64] BAGHDADI I, BRIAT O, GYAN P, et al. State of health assessment for lithium batteries based on voltage——time relaxation measure[J]. Electrochimica Acta, 2016, 194:461-472. [65] FENG X, LI J, OUYANG M, et al. Using probability density function to evaluate the state of health of lithium-ion batteries[J]. Journal of Power Sources, 2013, 232:209-218. [66] HU X, LI S E, JIA Z, et al. Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles[J]. Energy, 2014, 64:953-960. [67] LADPLI P, KOPSAFTOPOULOS F, CHANG F. Estimating state of charge and health of lithium-ion batteries with guided waves using built-in piezoelectric sensors/actuators[J]. Journal of Power Sources, 2018, 384:342-354. [68] RICHARDSON R R, OSBORNE M A, HOWEY D A. Battery health prediction under generalized conditions using a Gaussian process transition model[J]. Journal of Energy Storage, 2019, 23:320-328. [69] 洪吉超. 基于运行大数据的电动汽车动力电池安全控制管理研究[D]. 北京:北京理工大学, 2020. HONG Jichao. Big-data-driven safety control strategies for battery systems of real-world electric vehicles[D]. Beijing:Beijing Institute of Technology, 2020. [70] 梁凯智. 基于数据驱动的动力电池剩余寿命预测方法研究[D]. 北京:北京理工大学, 2020. LIANG Kaizhi. Research on prediction method of remaining useful life for power battery based on data driven[D]. Beijing:Beijing Institute of Technology, 2020. [71] FRISK E, KRYSANDER M, LARSSON E. Data-driven lead-acid battery prognostics using random survival forests[C]//Proceedings of the Annual Conference of The Prognostics and Health Management Society, September 29-October 2, 2014, Fort Worth, Texas, USA. Scottsdale, Arizona:PMH Society, 2014:92-101. [72] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016. ZHOU Zhihua. Machine learning[M]. Beijing:Tsinghua University Press, 2016. [73] WANG Q, WANG Z, ZHANG L, et al. A novel consistency evaluation method for series-connected battery systems based on real-world operation data[J]. IEEE Transactions on Transportation Electrification, 2020, 7(2):437-451. [74] ZHAO Y, LIU P, WANG Z, et al. Fault and defect diagnosis of battery for electric vehicles based on big data analysis methods[J]. Applied Energy, 2017, 207:354-362. [75] VATANPARVAR K, FAEZI S, BURAGO I, et al. Extended range electric vehicle with driving behavior estimation in energy management[J]. IEEE Transactions on Smart Grid, 2018, 10(3):2959-2968. [76] FIORI C, AHN K, RAKHA H A. Power-based electric vehicle energy consumption model:Model development and validation[J]. Applied Energy, 2016, 168:257-268. [77] HAIDAR A M, MUTTAQI K M. Behavioral characterization of electric vehicle charging loads in a distribution power grid through modeling of battery chargers[J]. IEEE Transactions on Industry Applications, 2015, 52(1):483-492. [78] CAI H, JIA X, CHIU A S F, et al. Siting public electric vehicle charging stations in Beijing using big-data informed travel patterns of the taxi fleet[J]. Transportation Research Part D:Transport and Environment, 2014, 33:39-46. [79] MENG H, LI Y. A review on prognostics and health management (PHM) methods of lithium-ion batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 116:109405. [80] KLASS V, BEHM M, LINDBERGH G. A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation[J]. Journal of Power Sources, 2014, 270:262-272. [81] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239:680-688. [82] ZHAO Q, QIN X, ZHAO H, et al. A novel prediction method based on the support vector regression for the remaining useful life of lithium-ion batteries[J]. Microelectronics Reliability, 2018, 85:99-108. [83] YANG D, WANG Y, PAN R, et al. State-of-health estimation for the lithium-ion battery based on support vector regression[J]. Applied Energy, 2018, 227:273-283. [84] CHEN Y, XIONG J, XU W, et al. A novel online incremental and decremental learning algorithm based on variable support vector machine[J]. Cluster Computing, 2019, 22(3):7435-7445. [85] WU J, ZHANG C, CHEN Z. An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks[J]. Applied Energy, 2016, 173:134-140. [86] LI G, SHI J. On comparing three artificial neural networks for wind speed forecasting[J]. Applied Energy, 2010, 87(7):2313-2320. [87] LIU K, SHANG Y, OUYANG Q, et al. A data-driven approach with uncertainty quantification for predicting future capacities and remaining useful life of lithium-ion battery[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4):3170-3180. [88] LI W, SENGUPTA N, DECHENT P, et al. Online capacity estimation of lithium-ion batteries with deep long short-term memory networks[J]. Journal of Power Sources, 2020, 482:228863. [89] YOU G W, PARK S, OH D. Diagnosis of electric vehicle batteries using recurrent neural networks[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4885-4893. [90] LI X, ZHANG L, WANG Z, et al. Remaining useful life prediction for lithium-ion batteries based on a hybrid model combining the long short-term memory and Elman neural networks[J]. Journal of Energy Storage, 2019, 21:510-518. [91] ZHANG Y. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018(67):5695-5705. [92] LIU J, SAXENA A, GOEBEL K, et al. An adaptive recurrent neural network for remaining useful life prediction of lithium-ion batteries[R]. National Aeronautics and Space Administration Moffett Field Ca Ames Research, 2010. [93] LIU D, ZHOU J, LIAO H, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(6):915-928. [94] LI H, PAN D, CHEN C L P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2014, 44(7):851-862. [95] LI X, YUAN C, LI X, et al. State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression[J]. Energy, 2020, 190:116467. [96] RICHARDSON R R, OSBORNE M A, HOWEY D A. Gaussian process regression for forecasting battery state of health[J]. Journal of Power Sources, 2017, 357:209-219. [97] LIU D, PANG J, ZHOU J, et al. Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression[J]. Microelectronics Reliability, 2013, 53(6):832-839. [98] XIONG R, CAO J, YU Q. Reinforcement learning-based real-time power management for hybrid energy storage system in the plug-in hybrid electric vehicle[J]. Applied Energy, 2018, 211:538-548. [99] ZENATI A, DESPREZ P, RAZIK H. Estimation of the SOC and the SOH of li-ion batteries, by combining impedance measurements with the fuzzy logic inference[C/CD]//Conference of the IEEE Industrial Electronics Society. IEEE, 2010. [100] ZHANG Y, XIONG R, HE H, et al. Lithium-ion battery remaining useful life prediction with Box-Cox transformation and Monte Carlo simulation[J]. IEEE Transactions on Industrial Electronics, 2018, 66(2):1585-1597. [101] 张彩萍, 姜久春. 用基于遗传优化的扩展卡尔曼滤波算法辨识电池模型参数[J]. 吉林大学学报, 2012, 42(3):732-737. ZHANG Caiping, JIANG Jiuchun. Extended Kalman filter algorithm for parameters identification of dynamic battery model based on genetic algorithm optimization[J]. Journal of Jilin University, 2012, 42(3):732-737. [102] 孙培坤. 电动汽车动力电池健康状态估计方法研究[D]. 北京:北京理工大学, 2016. SUN Peikun. Research of state of health estimation method for electric vehicle lithium-ion power battery[D]. Beijing:Beijing Institute of Technology, 2016. [103] WANG Z, MA J, ZHANG L. State-of-health estimation for lithium-ion batteries based on the multi-island genetic algorithm and the gaussian process regression[J]. IEEE Access, 2017(5):21286-21295. [104] 宋昕, 谷正气, 张清林, 等. 基于多岛遗传算法的湍流模型优化研究[J]. 湖南大学学报, 2011, 38(2):23-29. SONG Xin, GU Zhengqi, ZHANG Qinglin, et al. Study on the turbulence model optimization based on multi-island generic algorithm[J]. Journal of Hunan University, 2011, 38(2):23-29. [105] 王震坡, 孙培坤. 基于粒子群-高斯过程回归的锂离子电池充电特性与SOH关系探究[C]//中国电动车辆学术年会论文集, 武汉:中国汽车工程协会电动汽车分会, 2015:170-174. WANG Zhenpo, SUN Peikun. Research on the relation between charging characteristics and SOH of lithium ion batteries based on particle swarm-gaussian process regression[C]//Proceedings of China Electric Vehicle Academic Conference, Wuhan:Electric Vehicle Branch of China Automotive Engineering Association, 2015, 170-174. [106] QIN T, ZENG S, GUO J. Robust prognostics for state of health estimation of lithium-ion batteries based on an improved PSO-SVR model[J]. Microelectronics Reliability, 2015, 55(9-10):1280-1284. [107] GAO D, HUANG M. Prediction of remaining useful life of lithium-ion battery based on multi-kernel support vector machine with particle swarm optimization[J]. Journal of Power Electronics, 2017, 17(5):1288-1297. [108] YANG R, XIONG R, HE H, et al. A novel method on estimating the degradation and state of charge of lithium-ion batteries used for electrical vehicles[J]. Applied Energy, 2017, 207:336-345. [109] CHEN Z, MI C C, FU Y, et al. Online battery state of health estimation based on genetic algorithm for electric and hybrid vehicle applications[J]. Journal of Power Sources, 2013, 240:184-192. [110] 边明远, 李克强. 以智能网联汽车为载体的汽车强国战略顶层设计[J]. 中国工程科学, 2018, 20(1):52-58. BIAN Mingyuan, LI Keqiang. Strategic analysis on establishing an automobile power in china based on intelligent & connected vehicles[J]. Strategic Study of CAE, 2018, 20(1):52-58. |
[1] | 蒋翔宇, 冯毅雄, 洪兆溪, 胡炳涛, 司恒远, 谭建荣. 基于多级数据融合的核电站运行功能健康状态评估[J]. 机械工程学报, 2024, 60(4): 200-211. |
[2] | 戴国洪, 张道涵, 彭思敏, 苗一凡, 卓悦, 杨瑞鑫, 于全庆. 人工智能在动力电池健康状态预估中的研究综述[J]. 机械工程学报, 2024, 60(4): 391-408. |
[3] | 蒋帅, 陈铖, 段砚州, 熊瑞. 温度和老化影响下的锂离子电池荷电状态和健康状态联合估计方法研究[J]. 机械工程学报, 2024, 60(18): 266-275. |
[4] | 陈吉清, 陶洪达, 兰凤崇, 李伟健, 蒋心平. 低温冷源对动力电池包内部温湿特性影响分析[J]. 机械工程学报, 2024, 60(14): 227-237. |
[5] | 刘征宇, 张政, 郭乐凯, 孟辉, 刘项. 基于经验模态分解的锂离子电池健康状态预测[J]. 机械工程学报, 2024, 60(14): 272-281. |
[6] | 洪吉超, 张昕阳, 徐晓明, 李仁政, 金帅阳. 基于多熵融合的动力电池故障诊断与应用研究[J]. 机械工程学报, 2024, 60(12): 301-312. |
[7] | 李洪丞, 曹华军, 刘兰微, 邢镔, 潘新, 文旋豪, 葛威威. 碳达峰碳中和背景下低碳制造研究现状与技术路径研究[J]. 机械工程学报, 2023, 59(7): 225-240. |
[8] | 周航, 刘晓龙, 张梦迪, 孙金磊, 程泽. 基于简单循环单元的储能锂离子电池SOC和SOH联合估计方法*[J]. 电气工程学报, 2023, 18(3): 332-340. |
[9] | 杨世春, 卢宇, 周思达, 刘仕强, 王芳, 陈飞. 车用动力电池标准体系研究与分析[J]. 机械工程学报, 2023, 59(22): 3-19. |
[10] | 何洪文, 王浩宇, 王勇, 李双歧. 基于实车运行数据的锂离子电池健康状态估计[J]. 机械工程学报, 2023, 59(22): 46-58. |
[11] | 周兴振, 孙丙香, 张维戈, 王志豪, 黄勤河. 钛酸锂动力电池针刺内短路试验与机理研究[J]. 机械工程学报, 2023, 59(22): 111-123. |
[12] | 郭锐, 王涛, 李永涛, 王建伟, 蔡伟, 赵静一. 基于贝叶斯深度学习的外啮合齿轮泵健康状态识别研究[J]. 机械工程学报, 2023, 59(16): 397-405. |
[13] | 郭锐, 张印浩, 牛雯雯, 骆雄帅, 蔡伟, 王建伟, 王岳峰, 赵静一. 基于GLCT及CPA-SVM的变转速齿轮泵健康状态分类研究[J]. 机械工程学报, 2023, 59(14): 310-319. |
[14] | 汪俊亮, 高鹏捷, 张洁, 王力翚. 制造大数据分析综述:内涵、方法、应用和趋势[J]. 机械工程学报, 2023, 59(12): 1-16. |
[15] | 华丰, 王亚森, 金骏阳, 袁烨. 一种数据隐私保护下多方无损线性模型学习方法[J]. 机械工程学报, 2023, 59(12): 17-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||