[1] 陈学文,何阿平,阳虹,等.高超超临界汽轮机开发的关键技术及实施路线[J].热力透平,2012,41(2):89-96. CHEN Xuewen,HE Aping,YANG Hong,et al. Key technologies and program implementation for development of high USC steam turbines[J]. Thermal Turbine,2012,41(2):89-96. [2] 黄瓯,彭泽瑛. 700℃高超超临界技术的经济得益分析[J].热力透平,2010,39(3):170-174. HUANG Ou,PENG Zeying. Economy of 700℃ high USC technology[J]. Thermal Turbine,2010,39(3):170-174. [3] 徐炯,周一工. 700℃高效超超临界技术的发展[J].中外能源,2012,17(6):13-17. XU Jiong,ZHOU Yigong. The development of 700℃ USC technology[J]. Sino-Global Energy,2012,17(6):13-17. [4] 王会阳,安云岐,李承宇,等.镍基高温合金材料的研究进展[J].材料导报,2011,25(18):482. WANG Huiyang,AN Yunqi,LI Chengyu,et al. Research progress of Ni-based superalloys[J]. Materials Review,2011,25(18):482. [5] 田仲良,包汉生,何西扣,等. 700℃汽轮机转子用耐热合金的研究进展[J].钢铁,2015,50(2):54-69. TIAN Zhongliang,BAO Hansheng,HE Xikou,et al. Research development on the heat resistant alloy used for 700℃ USC turbine rotor[J]. Iron and Steel,2015,50(2):54-69. [6] 杨华春,林富生,谢锡善,等.欧洲700℃发电机组研发及617合金研究进展[J].发电设备,2012,26(5):355-359. YANG Huachun,LIN Fusheng,XIE Xishan,et al. R&P progress of 700℃ power generation technology and alloy 617 in eurpe[J]. Power Equipement,2012,26(5):355-359. [7] 王天剑,范华,张邦强,等. 700℃超超临界汽轮机关键部件用镍基高温合金选材[J].东方汽轮机,2012(2):46-53. WANG Tianjian,FAN Hua,ZHANG Bangqiang,et al. Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700℃[J]. Dongfang Turbine,2012(2):46-53. [8] MARTINO S,FAULKNER R,HOGG S,et al. Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications[J]. Materials Science&Engineering A,2014(619):77-86. [9] 郭岩,王彩侠,李太江,等. 700℃超超临界机组用617B镍基合金的组织结构和析出相[J].材料研究学报,2016,30(11):841-847. GUO Yan,WANG Caixia,LI Taijiang,et al. Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units[J]. Chinese Journal of Materials Research,2016,30(11):841-847. [10] 李季,郭岩,周荣灿,等. Alloy 617B合金蠕变行为及变形过程中的显微组织演化[J].中国电机工程学报,2017,37(7):2040-2045. LI Ji,GUO Yan,ZHOU Rongcan,et al. Creep deformation behavior of alloy 617B and the corresponding microstructural evolution[J]. Proceedings of the CSEE,2017,37(7):2040-2045. [11] 向雪梅,董建新,江河,等. 617B镍基高温合金长期时效组织演变[J].稀有金属材料与工程,2019,48(3):865-871. XIANG Xuemei,DONG Jianxin,JIANG He,et al. Microstructure evolution of 617B Ni-based superalloy during long-term aging[J]. Rare Metal Materials and Engineering,2019,48(3):865-871. [12] 江河,董建新,张麦仓,等. 700℃超超临界锅炉管用617B合金时效组织演变[J].稀有金属材料与工程,2016,45(4):982-989. JIANG He,DONG Jianxin,ZHANG Maicang,et al. Microstructure evolution during aging of alloy 617B for 700℃ ultra-supercritical boiler pipe[J]. Rare Metal Materials and Engineering,2016,45(4):982-989. [13] 崔璐,石红梅,李臻,等.先进汽轮机转子材料蠕变疲劳损伤研究新进展[J].机械强度,2018,40(2):449-454. CUI Lu,SHI Hongmei,LI Zhen,et al. New progress in research on damage for creep fatigue of modern turbine rotor[J]. Journal of Mechanical Strength,2018,40(2):449-454. [14] 宫建国,温建锋,轩福贞.蠕变-疲劳载荷下高温结构的缺口效应研究进展[J].机械工程学报,2015,51(24):24-40. GONG Jianguo,WEN Jianfeng,XUAN Fuzhen. Research progress on notch effect of high temperature components under creep-fatigue loading[J]. Journal of Mechanical Engineering,2015,51(24):24-40. [15] KOBAYASHI,HAYAKAWA,KIMURA. Creep-fatigue interaction properties of nickel-based superalloy 617[J]. Acta Metal Sin.,2011,24(2):125-131. [16] ASTM E2714. Standard test method for creep-fatigue testing[S]. West Conshohocken:ASTM International,2009. [17] 谢君,于金江,孙晓峰,等.高钨K416B铸造镍基合金高温蠕变期间碳化物演化行为[J].金属学报,2015,51(4):458. XIE Jun,YU Jinjiang,SUN Xiaofeng,et al. Carbide evolution behavior of K416B as-casting Ni-base superalloy with high W content during high temperature creep[J]. Acta Metal Sin.,2015,51(4):458. [18] 张凯,师梦杰,郑合凤,等. Inconel617合金中第二相的析出规律研究[J].原子能科学技术,2019,53(12):2428-2434. ZHANG Kai,SHI Mengjie,ZHANG Hefeng,et al. Precipitation mechanism of secondary phase in Inconel 617 alloy[J]. Atomic Energy Science and Technology,2019,53(12):2428-2434. [19] 李会芳. A-USC镍基合金组织演化及蠕变变形影响研究[D].大连:大连理工大学,2019. LI Huifang. Research on the microstructure evolution of A-USC Ni-based superalloy and the effect of creep deformation[D]. Dalian:Dalian University of Technology,2019. [20] 李玉清,刘锦岩.高温合金晶界间隙相[M].北京:冶金工业出版社,1990. LI Yuqing,LIU Jianyan. Interstitial phase in superalloy[M]. Beijing:Metallurgical Industry Press,1990. [21] 胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006. HU Gengxiang,CAI Xun,RONG Yonghua. Fundamentals of materials science[M]. Shanghai:Shanghai Jiao Tong University Press,2006. [22] 陈大钦,郑子樵,李世晨,等.共格沉淀析出过程的模拟I-微观结构演化[J].中国有色金属学报,2005,15(12):1945-1952. CHEN Daqin,ZHENG Ziqiao,LI Shichen,et al. Simulation of precipitation process of coherent particles I-microstructure evolution[J]. The Chinese Journal of Nonferrous Metals,2005,15(12):1945-1952. [23] 肖纪美.合金相与相变[M].北京:冶金工业出版社,2004. XIAO Jimei. Alloy phase and phase transformation[M]. Beijing:Metallurgical Industry Press,2004. [24] 饶思贤,彭辉,周煜,等. TP347H的高温蠕变-疲劳交互规律[J].机械工程学报,2015,51(2):37-42. RAO Sixian,PENG Hui,ZHOU Yu,et al. Interactions between creep and fatigue of TP347H under high temperature[J]. Journal of Mechanical Engineering,2015,51(2):37-42. [25] 吴生华.定向凝固镍基高温合金4706DS的蠕变疲劳机理研究[D].厦门:厦门大学,2014. WU Shenghua. Creep-fatigue mechanism research of the directionally solidified Nickel-base superalloy 4706DS[D]. Xiamen:Xiamen University,2014. [26] 郭建亭,袁超,侯介山.高温合金的蠕变及疲劳-蠕变-环境交互作用规律和机理[J].中国有色金属学报, 2011,21(3):487-503. GUO Jianting,YUAN Chao,HOU Jieshan. Creep and creep-fatigue-environment interaction and mechanisms of superalloys[J]. The Chinese Journal of Nonferrous Metals,2011,21(3):487-503. |