• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (24): 243-252.doi: 10.3901/JME.2022.24.243

• 运载工程 • 上一篇    下一篇

扫码分享

基于鲁棒积分滑模的四轮轮毂电机驱动电动汽车电液复合制动防抱死控制研究

张雷1,2, 刘青松1,2, 王震坡1,2   

  1. 1. 北京理工大学北京电动车辆协同创新中心 北京 100081;
    2. 北京理工大学电动车辆国家工程实验室 北京 100081
  • 收稿日期:2022-03-20 修回日期:2022-07-25 出版日期:2022-12-20 发布日期:2023-04-03
  • 通讯作者: 王震坡(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn
  • 作者简介:张雷,男,1987年出生,博士,副教授,博士研究生导师。主要研究方向为智能网联新能源汽车整车动力学控制及储能系统管理技术等。E-mail:lei_zhang@bit.edu.cn;刘青松,男,1995年出生,硕士研究生。主要研究方向为分布式驱动电动汽车动力学控制。E-mail:kg609521490@163.com;王震坡(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。E-mail:wangzhenpo@bit.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(2017YFB0103600)。

Research on Electro-hydraulic Composite ABS Control for Four-wheel-independent-drive Electric Vehicles Based on Robust Integral Sliding Mode Control

ZHANG Lei1,2, LIU Qingsong1,2, WANG Zhenpo1,2   

  1. 1. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081;
    2. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081
  • Received:2022-03-20 Revised:2022-07-25 Online:2022-12-20 Published:2023-04-03

摘要: 为了充分发挥四轮轮毂电机驱动电动汽车电机制动与液压摩擦制动响应快且独立可控的优势,提高紧急制动时车辆稳定性与安全性,提出一种基于鲁棒积分滑模的电液复合制动防抱死控制策略。采用分层控制架构,上层控制器为基于鲁棒积分滑模的车轮滑移率控制,下层控制器为电液复合制动力协调分配。建立整车动力学与电液复合制动系统模型,基于Simulink-AMESim-Carsim联合仿真平台,在四种典型制动工况下对上述电液复合制动防抱死控制策略进行仿真验证。结果表明,在无需实时获取路面附着系数与轮胎纵向力的情况下,所提出的控制策略仍能消除外界干扰使车轮滑移率收敛至期望值,适用于多种紧急制动工况,响应迅速且鲁棒性强;电机再生制动与液压摩擦制动可稳定协同工作,在保证制动可靠性的同时提升了乘坐舒适性。

关键词: 四轮轮毂电机驱动电动汽车, 电液复合制动, 制动防抱死控制, 鲁棒积分滑模

Abstract: In order to make full use of fast response and independent control of the electro-hydraulic composite braking system to improve the stability and safety for four-wheel-independent-drive electric vehicles, an anti-lock brake control strategy based on robust integral sliding mode control is proposed. The hierarchical control architecture is adopted, which consists of an upper and a lower controller. The upper controller is in charge of wheel slip ratio control and the lower controller is responsible for the coordination of regenerative braking and hydraulic braking torques. The vehicle dynamics and the composite braking system model are established. The effectiveness of the proposed control strategy is examined and verified under four typical braking conditions based on the Simulink-AMESim-Carsim joint simulation platform. The results show that the proposed control strategy can effectually eliminate the external disturbance and make the wheel slip ratio converge to the expected value without knowing the road adhesion coefficient and the tire longitudinal force. Besides, it also exhibits high robustness to a variety of emergency braking conditions and improves the ride comfort while ensuring braking safety and reliability via coordinating the regenerative braking and the hydraulic braking.

Key words: four-wheel-independent-drive electric vehicles, electro-hydraulic composite brake, anti-lock brake control, robust integral sliding mode

中图分类号: