• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2020, Vol. 56 ›› Issue (24): 125-134.doi: 10.3901/JME.2020.24.125

• 运载工程 • 上一篇    下一篇

扫码分享

四轮轮毂电机驱动电动汽车电液复合制动平顺性控制策略

张雷1,2, 刘青松1,2, 王震坡1,2   

  1. 1. 北京理工大学北京电动车辆协同创新中心 北京 100081;
    2. 北京理工大学电动车辆国家工程实验室 北京 100081
  • 收稿日期:2020-03-24 修回日期:2020-10-14 出版日期:2020-12-20 发布日期:2021-02-05
  • 通讯作者: 王震坡(通信作者),男,1976年出生,博士,教授,博士研究生导师。主要研究方向为电动汽车动力学理论与控制以及车用锂离子动力电池成组理论与技术。Email:wangzhenpo@bit.edu.cn
  • 作者简介:张雷,男,1987年出生,博士,长聘副教授,硕士研究生导师。主要研究方向为智能网联新能源汽车整车动力学控制及储能系统管理技术等。E-mail:lei_zhang@bit.edu.cn;刘青松,男,1995年出生。主要研究方向为分布式驱动电动汽车动力学控制。Email:kg609521490@163.com
  • 基金资助:
    国家重点研发计划(2017YFB0103600)和北京市科技新星计划(Z201100006820007)资助项目。

Electro-hydraulic Brake Control for Improved Ride Comfort in Four-wheel-independently-actuated Electric Vehicles

ZHANG Lei1,2, LIU Qingsong1,2, WANG Zhenpo1,2   

  1. 1. Collaborative Innovation Center for Electric Vehicles in Beijing, Beijing Institute of Technology, Beijing 100081;
    2. National Engineering Laboratory for Electric Vehicles, Beijing Institute of Technology, Beijing 100081
  • Received:2020-03-24 Revised:2020-10-14 Online:2020-12-20 Published:2021-02-05

摘要: 液压制动与电机再生制动的时域响应差异导致电动汽车在制动模式切换时产生冲击感,影响驾驶员驾驶感受和乘坐舒适性。以四轮轮毂电机驱动电动汽车为研究对象,提出一种基于分层架构的电液复合制动平顺性控制策略。针对"高压蓄能器+电机泵"式电子液压制动系统(EHB),上层控制器提出基于模糊控制的轮缸压力控制策略;针对制动模式切换过程中产生的冲击,下层控制器提出包括液压介入预测模块和电机制动补偿模块的电液复合制动平顺性控制策略。通过Simulink-AMESim联合仿真平台进行仿真试验验证。结果表明,轮缸压力控制策略能够保证轮缸液压力较好地追随目标压力,且稳态误差不超过2%;电液复合制动平顺性控制策略能够有效提高制动系统的响应速度,同时显著降低制动模式切换时的冲击,能提升车辆制动平顺性和乘坐舒适性。

关键词: 电液复合制动, 轮缸压力控制, 模糊控制, 平顺性控制策略

Abstract: The time domain response difference between the hydraulic and the electric brake often causes shocks during the brake mode switching process in between for electric vehicles (EVs), which would significantly compromise ride comfort. A ride-comfort-enabled strategy that consists of an upper and a lower controller is proposed for electro-hydraulic-combined brake system in a four-wheel-independently-actuated electric vehicle (FWIA EV). In the upper controller, a wheel cylinder pressure control strategy based on fuzzy control is proposed for an electro-hydraulic brake system (EHB) composed of a high-pressure accumulator and a motor pump. In order to tackle with the impact caused by brake mode switching, a ride-comfort-enabled strategy is proposed in the lower layer. It incorporates a hydraulic intervention prediction module and an electric brake compensation module. Finally, the proposed strategy is examined under various brake scenarios in Simulink-AMESim joint simulation. The results show that the wheel cylinder pressure can precisely track the target pressure with a steady-state error of less than 2% under different brake demands. The brake response is guaranteed and the impact during the brake mode switching process is significantly reduced under the proposed control strategy, thus achieving improved brake performance and ride comfort.

Key words: electro-hydraulic brake, wheel cylinder pressure control, fuzzy control, ride-comfort-enabled strategy

中图分类号: