机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 1-15.doi: 10.3901/JME.2022.21.001
尚祖峰1, 马家耀2,3, 王树新2,3
收稿日期:
2021-11-18
修回日期:
2022-05-07
出版日期:
2022-11-05
发布日期:
2022-12-23
通讯作者:
尚祖峰(通信作者),男,1992年出生,博士,副教授,硕士研究生导师。主要研究方向为基于编织结构的柔性机器人。E-mail:zufeng_shang@zstu.edu.cn
作者简介:
马家耀,男,1986年出生,博士,副教授,博士研究生导师。主要研究方向为折纸结构,折展结构,薄壁吸能结构,微创手术医疗器械等。E-mail:jiayao.ma@tju.edu.cn;王树新,男,1966年出生,博士,教授,博士研究生导师,中国工程院院士。主要研究方向为机械系统动力学、水下机器人与医疗手术机器人等。E-mail:shuxinw@tju.edu.cn
基金资助:
SHANG Zufeng1, MA Jiayao2,3, WANG Shuxin2,3
Received:
2021-11-18
Revised:
2022-05-07
Online:
2022-11-05
Published:
2022-12-23
摘要: 微创手术以体表小切口或人体腔道为入路,造成的组织创伤更小,代表着外科手术的最前沿。对于位置深远的病灶,需采用细长柔性器械来适应复杂的体腔环境。具有变刚度特性的手术器械臂,可实现柔性器械的刚柔并济,是保障术中人机交互安全、兼顾操作精度和力输出的关键。聚焦于微创手术器械臂领域,对变刚度机理进行综述,将其分类为:阻塞法、热响应材料法、形状锁合法、力对抗法、梁特征重构法以及混合法。根据对器械臂的性能要求,首先讨论、比较了各变刚度机理在刚化能力、响应时间、空间占用等方面上的性能。然后,综述了潜在的器械臂变刚度设计方法并分析其前景与挑战。最后,总结展望了该研究领域,指出发掘新型变刚度材料及基于仿生理念开展结构/功能一体化设计是本领域寻求突破的重点。
中图分类号:
尚祖峰, 马家耀, 王树新. 面向微创手术器械臂的可变刚度机理综述[J]. 机械工程学报, 2022, 58(21): 1-15.
SHANG Zufeng, MA Jiayao, WANG Shuxin. Review of Variable Stiffness Mechanisms in Minimally Invasive Surgical Manipulators[J]. Journal of Mechanical Engineering, 2022, 58(21): 1-15.
[1] TSUI C, KLEIN R, GARABRANT M. Minimally invasive surgery:National trends in adoption and future directions for hospital strategy[J]. Surgical Endoscopy and Other Interventional Techniques, 2013, 27(7):2253-2257. [2] TRACY C R, RAMAN J D, CADEDDU J A, et al. Laparoendoscopic single-site surgery in urology:Where have we been and where are we heading?[J]. Nature Reviews Urology, 2008, 5(10):561-568. [3] STRONG A T, RODRIGUEZ J, KROH M, et al. Intramural surgery:A new vista in minimally invasive therapy[J]. Journal of the American College of Surgeons, 2017, 225(2):339-342. [4] MOHIUDDIN K, SWANSON S J. Maximizing the benefit of minimally invasive surgery[J]. Journal of Surgical Oncology, 2013, 108(5):315-319. [5] MURTTER D, MARESCAUX J. Appendicitis/diverticulitis:Minimally invasive surgery[J]. Digestive Diseases, 2013, 31(1):76-82. [6] 赵玉沛, 邱江东. 中国腹腔镜胰腺癌根治术:20年回顾与展望[J]. 中华普外科手术学杂志(电子版), 2021, 15(3):237-240. ZHAO Yupei, QIU Jiangdong. The laparoscopic radical surgery for pancreatic cancer in China:Review and prospect in 20 years[J]. Chinese Journal of Operative Procedures of General Surgery(Electronic Edition), 2021, 15(3):237-240. [7] 孙玉成, 刘晓巍, 片光哲. 两种微创术式治疗重度直肠脱垂46例疗效观察[J]. 中国肛肠病杂志, 2021, 41(6):59-62. SUN Yucheng, LIU Xiaowei, PIAN Guangzhe. Comparison on the effects of two mini-invasive procedure for severe rectocele of 46 cases[J]. Chinese Journal of Coloproctology, 2021, 41(6):59-62. [8] 黄相威, 单云峰. 微创保胆取石术与腹腔镜胆囊切除术治疗胆结石的手术分析[J]. 数理医药学杂志, 2020, 33(12):1763-1765. HUANG Xiangwei, SHAN Yunfeng. Surgical analysis of minimally invasive gallstone preservation and laparoscopic cholecystectomy for gallstones[J]. Journal of Mathematical Medicine, 2020, 33(12):1763-1765. [9] 朱可安, 陈灵, 李昭, 等. 应用单孔腹腔镜开展常见妇科手术的可行性探讨[J]. 中华腔镜外科杂志(电子版), 2021, 14(3):158-162. ZHU Ke'an, CHEN Ling, LI Zhao, et al. Feasibility study of using laparoendoscopic single site surgery to carry out common gynecological[J]. Chinese Journal of Laparoscopic Surgery(Electronic Version), 2021, 14(3):158-162. [10] MCGEE M F, ROSEN M J, MARKS J, et al. A primer on natural orifice transluminal endoscopic surgery:Building a new paradigm[J]. Surgical Innovation, 2006, 13(2):86-93. [11] ALHAMYANI S S A, ABDELRAHMAN T M. Natural orifice transluminal endoscopic surgery:Uses, advantages, complications and cost[J]. Journal of Research in Medical and Dental Science, 2020, 8(4):99-106. [12] RATTNER D, KALLOO A. ASGE/SAGES working group on natural orifice translumenal endoscopic surgery[J]. Gastrointestinal Endoscopy, 2006, 63(2):199-203. [13] TROCHIMCZUK R. Comparative analysis of RCM mechanisms based on parallelogram used in surgical robots for laparoscopic minimally invasive surgery[J]. Journal of Theoretical and Applied Mechanics, 2020, 58(4):911-925. [14] GIFARI M W, NAGHIBI H, STRAMIGIOLI S, et al. A review on recent advances in soft surgical robots for endoscopic applications[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2019, 15(5):e2010. [15] SHAIKH S N, THOMPSON C C. Natural orifice translumenal surgery:Flexible platform review[J]. World Journal of Gastrointestinal Surgery, 2010, 2(6):210-216. [16] National Orifice Surgery Consortium for Assessment and Research. Working group summary on development of a multitasking platform[EB/OL].[2006-10-11]. http://www.noscar.org/presentations-2006/tasking-platform. [17] LOEVE A, BREEDVELD P, DANKELMAN J. Scopes too flexible and too stiff[J]. IEEE Pulse, 2010, 1(3):26-41. [18] ZUO S, WANG S. Current and emerging robotic assisted intervention for NOTES[J]. Expert Review of Medical Devices, 2016, 13(12):1095-1105. [19] 王田苗, 郝雨飞, 杨兴帮, 等. 软体机器人:结构, 驱动, 传感与控制[J]. 机械工程学报, 2017, 53(13):1-13. WANG Tianmiao, HAO Yufei, YANG Xingbang, et al. Soft robotics:structure, actuation, sensing and control[J]. Chinese Journal of Mechanical Engineering, 2017, 53(13):1-13. [20] DOU W, ZHONG G, CAO J, et al. Soft robotic manipulators:Designs, actuation, stiffness tuning, and sensing[J]. Advanced Materials Technologies, 2021, 6(9):2100018. [21] MANTI M, CACUCCIOLO V, CIANCHETTI M. Stiffening in soft robotics:A review of the state of the art[J]. IEEE Robotics and Automation Magazine, 2016, 23(3):93-106. [22] BLANC L, DELCHAMBRE A, LAMBERT P. Flexible medical devices:review of controllable stiffness solutions[J]. Actuators, 2017, 6(3):23. [23] LIU A J, NAGEL S R. Jamming is not just cool any more[J]. Nature, 1998, 396:21-22. [24] FITZGERALD S G, DELANEY G W, HOWARD D. A review of jamming actuation in soft robotics[J]. Actuators, 2020, 9(4):104. [25] AKTAS B, NARANG Y S, VASIOS N, et al. A modeling framework for jamming structures[J]. Advanced Functional Materials, 2021, 31(16):2007554. [26] BROWN E, RODENBERG N, AMEND J, et al. Universal robotic gripper based on the jamming of granular material[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18809-18814. [27] AMEND J, BROWN E, RODENBERG N, et al. A positive pressure universal gripper based on the jamming of granular material[J]. IEEE Transactions on Robotics, 2012, 28(2):341-350. [28] CIANCHETTI M, RANZANI T, GERBONI G, et al. Soft robotics technologies to address shortcomings in today's minimally invasive surgery:the STIFF-FLOP approach[J]. Soft Robotics, 2014, 1(2):122-131. [29] DE FALCO I, CIANCHETTI M, MENCIASSI A. A soft multi-module manipulator with variable stiffness for minimally invasive surgery[J]. Bioinspiration and Biomimetics, 2017, 12(5):056008. [30] RANZANI T, CIANCHETTI M, GERBONI G, et al. A soft modular manipulator for minimally invasive surgery:Design and characterization of a single module[J]. IEEE Transactions on Robotics, 2016, 32(1):187-200. [31] WEI Y, CHEN Y, YANG Y, et al. A soft robotic spine with tunable stiffness based on integrated ball joint and particle jamming[J]. Mechatronics, 2016, 33:84-92. [32] WEI Y, CHEN Y, REN T, et al. A novel, variable stiffness robotic gripper based on integrated soft actuating and particle jamming[J]. Soft Robotics, 2016, 3(3):134-143. [33] LI Y, CHEN Y, YANG Y, et al. Passive particle jamming and its stiffening of soft robotic grippers[J]. IEEE Transactions on Robotics, 2017, 33(2):446-455. [34] CHIO J, LEE D Y, EO J H, et al. Tendon-driven jamming mechanism for configurable variable stiffness[J]. Soft Robotics, 2021, 8(1):109-118. [35] BRANCADORO M, MANTI M, TOGNARELLI S, et al. Fiber jamming transition as a stiffening mechanism for soft robotics[J]. Soft Robotics, 2020, 7(6):663-674. [36] VASIOS N, NARANG Y, AKTAS B, et al. Numerical analysis of periodic laminar and fibrous media undergoing a jamming transition[J]. European Journal of Mechanics A-Solids, 2019, 75:322-329. [37] BRANCADORO M, MANTI M, GRANI F, et al. Toward a variable stiffness surgical manipulator based on fiber jamming transition[J]. Frontiers in Robotics and AI, 2019, 6:12. [38] BRANCADORO M, MANTI M, TOGNARELLI S, et al. Preliminary experimental study on variable stiffness structures based on fiber jamming for soft robots[C]//Proceedings of 1st IEEE-RAS International Conference on Soft Robotics, April 24-28, 2018, Livorno, Italy:IEEE, 2018:258-263. [39] AKTAS B, HOWE R D. Tunable anisotropic stiffness with square fiber jamming[C]//Proceedings of 3rd IEEE International Conference on Soft Robotics, July 15, 2020, New Haven, CT, USA:IEEE 2020:879-884. [40] CHAUHAN S, GUERRA M, DE MEL R. Selective stiffening mechanism for surgical-assist soft robotic applications[C]//Proceedings of SAI Intelligent Systems Conference, September 06-07, 2018, London, UK:Springer, 2018, 868:791-803. [41] WANG T, ZHANG J, LI Y, et al. Electrostatic layer jamming variable stiffness for soft robotics[J]. IEEE-ASME Transactions on Mechatronics, 2019, 24(2):424-433. [42] GAO Y, HUANG X, MANN I S, et al. A novel variable stiffness compliant robotic gripper based on layer jamming[J]. Journal of Mechanisms and Robotics, 2020, 12(5):051013. [43] KIM Y J, CHENG S, KIM S, et al. A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2013, 29(4):1031-1042. [44] KIM Y J, CHENG S, KIM S, et al. Design of a tubular snake-like manipulator with stiffening capability by layer jamming[C]//IEEE International Conference on Intelligent Robots and Systems, October 07-12, 2012, Algarve, Portugal:IEEE, 2012:4251-4256. [45] SHANG Z, MA J, YOU Z, et al. A foldable manipulator with tunable stiffness based on braided structure[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2020, 108(2):316-325. [46] SHANG Z, MA J, YOU Z, et al. Lateral indentation of a reinforced braided tube with tunable stiffness[J]. Thin-Walled Structures, 2020, 149:106608. [47] AMANOV E, NGUYEN T D, MARKMANN S, et al. Toward a flexible variable stiffness endoport for single-site partial nephrectomy[J]. Annals of Biomedical Engineering, 2018, 46(10):1498-1510. [48] ZHAO Y, SHAN Y, ZHANG J, et al. A soft continuum robot, with a large variable-stiffness range, based on jamming[J]. Bioinspiration and Biomimetics, 2019, 14(6):066007. [49] WANG J, WANG S, LI J, et al. Development of a novel robotic platform with controllable stiffness manipulation arms for laparoendoscopic single-site surgery (LESS)[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2018, 14(1):e1838. [50] LI J, LI X, WANG J, et al. Design and evaluation of a variable stiffness manual operating platform for laparoendoscopic single site surgery (LESS)[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13(4):e1797. [51] GE H, LI H, MEI S, et al. Low melting point liquid metal as a new class of phase change material:An emerging frontier in energy area[J]. Renewable and Sustainable Energy Reviews, 2013, 21:331-346. [52] XING Z, WANG F, JI Y, et al. A structure for fast stiffness-variation and omnidirectional-steering continuum manipulator[J]. IEEE Robotics and Automation Letters, 2020, 6(2):755-762. [53] ZHAO R, YAO Y, LUO Y. Development of a variable stiffness over tube based on low-melting-point-alloy for endoscopic surgery[J]. Journal of Medical Devices, 2016, 10(2):021002. [54] WEI X, JU F, CHEN B, et al. Development of a variable-stiffness and shape-detection manipulator based on low-melting-point-alloy for minimally invasive surgery[C]//IEEE Engineering in Medicine and Biology Society Conference Proceedings, July 20-24, 2020, Montreal, Canada:IEEE, 2020:4895-4898. [55] ALAMEIGI F, SEIFABADI R, ARMAND M. A continuum manipulator with phase changing alloy[C]//IEEE International Conference on Robotics and Automation ICRA, May 16-21, 2016, Stockholm, Sweden:IEEE, 2016:758-764. [56] WANG H, CHEN Z, ZUO S. Flexible manipulator with low-melting-point alloy actuation and variable stiffness[J]. Soft Robotics, 2022, 9(3):577-590. [57] PETERS J, NOLAN E, WIESE M, et al. Actuation and stiffening in fluid-driven soft robots using low-melting-point material[C]//IEEE International Conference on Intelligent Robots and Systems, November 04-08, 2019, Macau, China:IEEE, 2019:4692-4698. [58] CHENG N, ISHIGAMI G, HAWTHORNE S, et al. Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator[C]//IEEE International Conference on Robotics and Automation ICRA, May 03-08, 2010, Anchorage, AK, USA:IEEE, 2010:5207-5212. [59] CHENG N G, GOPINATH A, WANG L, et al. Thermally tunable, self-healing composites for soft robotic applications[J]. Macromolecular Materials and Engineering, 2014, 299(11):1279-1284. [60] LOEVE A J, BOSMA J H, BREEDVELD P, et al. Polymer rigidity control for endoscopic shaft-guide ‘Plastolock’-a feasibility study[J]. Journal of Medical Devices, 2010, 4(4):045001. [61] GAO Q, SUN Z. A novel design of water-activated variable stiffness endoscopic manipulator with safe thermal insulation[J]. Actuators, 2021, 10(6):130. [62] YAN J, SHI P, XU Z, et al. A wide-range stiffness-tunable soft actuator inspired by deep-sea glass sponges[J]. Soft Robotics, 2022, 9(3):625-637. [63] LE H M, PHAN P T, LIN C, et al. A temperature-dependent, variable-stiffness endoscopic robotic manipulator with active heating and cooling[J]. Annals of Biomedical Engineering, 2020, 48(6):1837-1849. [64] LE H M, CAO L, DO T N, et al. Design and modelling of a variable stiffness manipulator for surgical robots[J]. Mechatronics, 2018, 53:109-123. [65] PARK J, LEE H, KEE H, et al. Magnetically steerable manipulator with variable stiffness using graphene polylactic acid for minimally invasive surgery[J]. Sensors and Actuators A-Physical, 2020, 309:112032. [66] JIANG S, CHEN B, QI F, et al. A variable-stiffness continuum manipulators by an SMA-based sheath in minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16(2):e2081. [67] YAGI A, MATSUMIYA K, MASAMUNE K, et al. Rigid-flexible outer sheath model using slider linkage locking mechanism and air pressure for endoscopic surgery[C]//9th International Conference on Medical Image Computing and Computer-Assisted Intervention, October 01-06, 2006, Copenhagen, Denmark:Springer, 2006, 9(1):503-510. [68] YAGI A, MATSUMIYA K, MASAMUNE K, et al. Rigid-flexible outer sheath model using shape lock mechanism by air pressure and wire driven curving mechanism[C]//World Congress on Medical Physics and Biomedical Engineering, August 27-September 01, 2006, Seoul, Korea:Springer, 2006, 5(17):3108-3111. [69] ZUO S, IIJIMA K, TOKUMIYA T, et al. Variable stiffness outer sheath with "Dragon skin" structure and negative pneumatic shape-locking mechanism[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(5):857-865. [70] ZUO S, YAMANAKA N, SATO I, et al. MRI-compatible rigid and flexible outer sheath device with pneumatic locking mechanism for minimally invasive surgery[C]//4th International Workshop on Medical Imaging and Augmented Reality, August 1-2, 2008, Tokyo, Japan:Springer, 2008, 5128:210. [71] GIANNICCINI M E, XIANG C, ATYABI A, et al. Novel design of a soft lightweight pneumatic continuum robot arm with decoupled variable stiffness and positioning[J]. Soft Robotics, 2018, 5(1):54-70. [72] HAO L, XIANG C, GIANNACCINI M E, et al. Design and control of a novel variable stiffness soft arm[J]. Advanced Robotics, 2018, 32(11):605-622. [73] GAO X, LI X, ZHAO C, et al. Variable stiffness structural design of a dual-segment continuum manipulator with independent stiffness and angular position[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67:102000. [74] LIU Y, YANG Y, PENG Y, et al. A light soft manipulator with continuously controllable stiffness actuated by a thin McKibben pneumatic artificial muscle[J]. IEEE-ASME Transactions on Mechatronics, 2020, 25(4):1944-1952. [75] MANFREDI L, YUE L, ZHANG J, et al. A 4 DOFs variable stiffness soft module[C]//Proceedings of 1st IEEE-RAS International Conference on Soft Robotics, April 24-28, 2018, Livorno, Italy:IEEE, 2018:94-99. [76] LOEVE A J, PLETTENBURG D H, BREEDVELD P, et al. Endoscope shaft-rigidity control mechanism:"FORGUIDE"[J]. IEEE Transactions on Biomedical Engineering, 2011, 59(2):542-551. [77] KIM Y J, CHENG S, KIM S, et al. A stiffness-adjustable hyperredundant manipulator using a variable neutral-line mechanism for minimally invasive surgery[J]. IEEE Transactions on Robotics, 2013, 30(2):382-395. [78] LOSCHAK P M, BURKE S F, ZUMBRO E, et al. A robotic system for actively stiffening flexible manipulators[C]//IEEE International Conference on Intelligent Robots and Systems, September 28-October 02, 2015, Hamburg, Germany:IEEE, 2015:216-221. [79] TAMADON I, HUAN Y, de GROOT A G, et al. Positioning and stiffening of an articulated/continuum manipulator for implant delivery in minimally invasive surgery[J]. International Journal of Medical Robotics and Computer Assisted Surgery, 2020, 16(2):e2072. [80] HUH T M, PARK Y J, CHO K J. Design and analysis of a stiffness adjustable structure using an endoskeleton[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(7):1255-1258. [81] CAO Y, JU F, ZHANG L, et al. A novel variable-stiffness flexible manipulator actuated by shape memory alloy for minimally invasive surgery[J]. Proceedings of the Institution of Mechanical Engineering Part H-Journal of Engineering in Medicine, 2018(11), 232:1098-1110. [82] KAWASE T, SUGINO T, ONOGI S, et al. Improvement of a tunable stiffness organ-grasping device by design of a wavy-shaped beam structure[J]. Applied Sciences-Basel, 2021, 11(10):4581. [83] KIM J, NAKAJIMA Y, KOBAYASHI K. A suction-fixing, stiffness-tunable liver manipulator for laparoscopic surgeries[J]. IEEE-ASME Transactions on Mechatronics, 2017, 23(1):262-273. [84] ZHOU Y, HEADINGS L M, DAPINO M J. Discrete layer jamming for safe co-robots[C]//IEEE International Conference on Robotics and Automation ICRA, May 20-24, 2019, Montreal, Canada:IEEE, 2019:6124-6129. [85] ZHAO B, ZHANG W, ZHANG Z, et al. Continuum manipulator with redundant backbones and constrained bending curvature for continuously variable stiffness[C]//IEEE International Conference on Intelligent Robots and Systems, October 1-5, 2018, Madrid, Spain:IEEE, 2018:7492-7499. [86] ZHAO B, ZENG L, WU Z, et al. A continuum manipulator for continuously variable stiffness and its stiffness control formulation[J]. Mechanism and Machine Theory, 2020, 149:103746. [87] KIM J, CHOI W Y, KANG S, et al. Continuously variable stiffness mechanism using nonuniform patterns on coaxial tubes for continuum microsurgical robot[J]. IEEE Transactions on Robotics, 2019, 35(6):1475-1487. [88] KIM Y, CHENG S S, DESAI J P. Active stiffness tuning of a spring-based continuum robot for MRI-guided neurosurgery[J]. IEEE Transactions on Robotics, 2017, 34(1):18-28. [89] 张国凯, 马家耀, 尚祖峰, 等. 具有折展与变刚度特征的NOTES手术器械臂[J]. 机械工程学报, 2018, 54(17):28-35. ZHANG Guokai, MA Jiayao, SHANG Zufeng, et al. Deployable manipulator with tunable stiffness for natural orifice transluminal endoscopic surgery[J]. Chinese Journal of Mechanical Engineering, 2018, 54(17):28-35. [90] WEHRMEYER J A, BARTHEL J A, ROTH J P, et al. Colonoscope flexural rigidity measurement[J]. Medical and Biological Engineering and Computing, 1998, 36(4):475-479. [91] 栾吉森, 胡晓燕. 提高Bi-Sn低熔点合金性能的研究[J]. 模具技术, 1985:34-38. LUAN Jisen, HU Xiaoyan. Research on improving the performance of the Bi-Sn based low-melting-point alloy[J]. Die and Mould Technology, 1985:34-38. [92] SWANSTROM L L, KOZAREK R, PASRICHA P J, et al. Development of a new access device for transgastric surgery[J]. Journal of Gastrointestinal Surgery, 2005, 9(8):1129-1137. [93] THOMPSON C C, RYOU M, SOPER N J, et al. Evaluation of a manually driven, multitasking platform for complex endoluminal and natural orifice transluminal endoscopic surgery applications (with video)[J]. Gastrointestinal Endoscopy, 2009, 70(1):121-125. [94] EHRLICH D, MUTHUSAMY V R. Device profile of the EXALT Model D single-use duodenoscope for endoscopic retrograde cholangiopancreatography:Overview of its safety and efficacy[J]. Expert Review of Medical Devices, 2021, 18(5):421-427. [95] ZHENG Q, XU C, JIANG Z, et al. Smart actuators based on external stimulus response[J]. Frontiers in Chemistry, 2021, 9:650358. [96] REN X, ZHANG G, SHANG Z, et al. A variable stiffness spring-sponge composite tube with fast response and shape recovery[J]. Macromolecular Materials and Engineering, 2018, 303(10):1800185. [97] 朱艳青, 史继富, 王雷雷, 等. 3D打印技术发展现状[J]. 制造技术与机床, 2015(12):50-57. ZHU Yanqing, SHI Jifu, WANG Leilei, et al. Current status of the three-dimensional printing technology[J]. Manufacturing Technology and Machine Tool, 2015(12):50-57. [98] 岳敏, 李红伟, 李海燕. 3D打印在弹性体领域的应用[J]. 橡胶工业, 2019, 66(10):795-798. YUE Min, LI Hongwei, LI Haiyan. Applications of 3D-printing in elastomer[J]. China Rubber Industry, 2019, 66(10):795-798. [99] ZHANG Y F, ZHANG N, HINGORANI H, et al. Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing[J]. Advanced Functional Materials, 2019, 29(15):1806698. [100] KORKEES F, ALLENBY J, DORRINGTON P. 3D printing of composites:design parameters and flexural performance[J]. Rapid Prototyping Journal, 2020, 26(4):699-706. [101] LIPTON J I, LIPSON H. 3D printing variable stiffness foams using viscous thread instability[J]. Scientific Reports, 2016, 6:29996. [102] YANG Y, CHEN Y, WEI Y, et al. Novel design and three-dimensional printing of variable stiffness robotic grippers[J]. Journal of Mechanisms and Robotics, 2016, 8(6):061010. [103] YANG Y, CHEN Y, LI Y, et al. 3D printing of variable stiffness hyper-redundant robotic arm[C]//IEEE International Conference on Robotics and Automation ICRA, May 16-21, 2016, Stockholm, Sweden:IEEE, 2016:3871-3877. [104] TAGHAVI M, HELPS T, HUANG B, et al. 3D-printed ready-to-use variable-stiffness structures[J]. IEEE Robotics and Automation Letters, 2018, 3(3):2402-2407. [105] JOLLY M R, BENDER J W, CARLSON J D. Properties and applications of commercial magnetorheological fluids[J]. Journal of Intelligent Material Systems and Structures, 1999, 10(1):5-13. [106] LI J, HU B, GENG P, et al. Variable stiffness mechanism design and analysis for a snake-like robot[C]//Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO), December 12-15, 2018, Kuala Lumpur, Malaysia:IEEE, 2018:331-336. [107] ZHANG D, YUAN H, CAO Z. Environmental adaptive control of a snake-like robot with variable stiffness actuators[J]. IEEE-CAA Journal of Automatica Sinica, 2020, 7(3):745-751. [108] 李鸽鸽, 刘保国, 董亚军. 磁流变体在机械工程中的应用综述[J]. 机械强度, 2015, 37(2):219-225. LI Gege, LIU Baoguo, DONG Yajun. Overview on application of magnetorheological fluids in mechanical engineering[J]. Journal of Mechanical Strength, 2015, 37(2):219-225. [109] TAKEMURA K, YOKOTA S, EDAMURA K. Development and control of a micro artificial muscle cell using electro-conjugate fluid[J]. Sensors and Actuators A-Physical, 2007, 133(2):493-499. [110] 涂福泉, 刘小双, 毛阳, 等. 电流变液的研究现状及其应用进展[J]. 材料导报, 2014, 28(11):66-68. TU Fuquan, LIU Xiaoshuang, MAO Yang, et al. Recent progress and application of electrorheological fluids[J]. Materials Reports, 2014, 28(11):66-68. [111] YANG C, GENG S, WALKER I, et al. Geometric constraint-based modeling and analysis of a novel continuum robot with shape memory alloy initiated variable stiffness[J]. International Journal of Robotics Research, 2020, 39(14):1620-1634. [112] SUN C, CHEN L, LIU J, et al. A hybrid continuum robot based on pneumatic muscles with embedded elastic rods[J]. Proceedings of the Institution of Mechanical Engineers Part C-Journal of Mechanical Engineering Science, 2020, 234(1):318-328. [113] SHAH D S, YANG E J, YUEN M C, et al. Jamming skins that control system rigidity from the surface[J]. Advanced Functional Materials, 2021, 31(1):2006915. [114] LIU C, LI B, LI Z, et al. 3D printable and fringe electric field adhesion enabled variable stiffness artificial muscles for semi-active vibration attenuation[J]. Soft Matter, 2021, 17(28):6697-6706. |
[1] | 张赫, 李海铭, 张佳闪, 任昊, 李浩天, 赵杰. 面向腔镜微创手术的连续体机械手关键技术与研究进展[J]. 机械工程学报, 2023, 59(19): 44-64. |
[2] | 孙广开, 何彦霖, 于洋, 韩静, 赵冠棋, 周康鹏, 祝连庆. 连续体手术机器人光纤导航技术现状和展望[J]. 机械工程学报, 2023, 59(1): 1-18. |
[3] | 金天贺, 张志, 刘志明, 孙帅帅, 尹丽云. 高速列车H∞控制可变刚度悬挂系统应用研究[J]. 机械工程学报, 2022, 58(8): 204-214. |
[4] | 冯美, 李妍, 赵继, 呼咏, 高奎鸿. 机器人辅助微创手术器械丝传动张力传递研究[J]. 机械工程学报, 2021, 57(11): 120-127. |
[5] | 叶伟, 谢镇涛, 李秦川. 一种可用于微创手术的并联机构运动学分析与性能优化[J]. 机械工程学报, 2020, 56(19): 103-112. |
[6] | 张国凯, 马家耀, 尚祖峰, 陈焱, 由衷, 易波, 王树新. 具有折展与变刚度特征的NOTES手术器械臂[J]. 机械工程学报, 2018, 54(17): 28-35. |
[7] | 刘光, 张鹏飞, 陈华伟, 韩志武, 张德远. 载能电刀仿生防粘表面技术[J]. 机械工程学报, 2018, 54(17): 21-27. |
[8] | 杨名远, 马家耀, 李建民, 陈焱, 王树新. 基于厚板折纸理论的微创手术钳[J]. 机械工程学报, 2018, 54(17): 36-45. |
[9] | 陈煜宇, 刘磊, 李博, 魏超, 王树新, 李涤尘. 柔性驱动与刚度可调结构/功能一体化微创手术操作臂设计制造与性能研究[J]. 机械工程学报, 2018, 54(17): 53-61. |
[10] | 王田苗, 郝雨飞, 杨兴帮, 文力. 软体机器人:结构、驱动、传感与控制[J]. 机械工程学报, 2017, 53(13): 1-13. |
[11] | 胡中伟, 林旺源, 徐西鹏. 三种典型生物软组织切割特性的试验研究[J]. 机械工程学报, 2016, 52(11): 186-192. |
[12] | 潘博;付宜利;王树国;杨宗鹏. 微创条件约束下内窥镜操作机器人运动学[J]. , 2009, 45(3): 162-168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||