• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (21): 16-26.doi: 10.3901/JME.2022.21.016

• 机器人及机构学 • 上一篇    下一篇

扫码分享

多飞行器集联平台的设计与轨迹线性化几何控制

俞玉树1, 王凯迪1, 杜健睿1, 徐彬2,3, 项昌乐2,3   

  1. 1. 北京理工大学机电学院 北京 100081;
    2. 北京理工大学机械与车辆学院 北京 100081;
    3. 北京理工大学重庆创新中心 重庆 401135
  • 收稿日期:2021-11-18 修回日期:2022-05-18 出版日期:2022-11-05 发布日期:2022-12-23
  • 通讯作者: 徐彬(通信作者),男,1982年出生,博士,教授,博士研究生导师。主要研究方向为陆空多域飞行器技术。E-mail:bitxubin@bit.edu.cn
  • 作者简介:俞玉树,男,1985年出生,博士,副教授,博士研究生导师。主要研究方向为机器人与控制。E-mail:yushu.yu@bit.edu.cn
  • 基金资助:
    国家自然科学基金面上资助项目(62173037)。

Design and Trajectory Linearization Geometric Control of Multiple Aerial Vehicles Assembly

YU Yushu1, WANG Kaidi1, DU Jianrui1, XU Bin2,3, XIANG Changle2,3   

  1. 1. School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081;
    3. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401135
  • Received:2021-11-18 Revised:2022-05-18 Online:2022-11-05 Published:2022-12-23

摘要: 将多个无人机组合为“集联”飞行平台,能够解决单一无人机通常存在的欠驱动问题,实现六维全向运动,构建飞行操作平台。同时,多飞行器集联平台相比单一飞行器在带载能力、容错能力等方面具有优势。多飞行器集联平台的设计与控制是这一新型平台实现过程中的关键问题。设计了以三架子飞行器在星形连接形式下的集联平台结构,这一集联形式下,集联平台整体具备同时调整六维位置和姿态的能力。对集联平台整体系统进行动力学建模,进而设计了系统整体的控制器。为简化控制,采用奇异摄动理论的思想将整体系统分离为快变子系统和慢变子系统,其中快变子系统对应子飞行器的姿态运动,慢变子系统对应于集联平台的整体运动。由于飞行器的位形空间位于非欧空间,首次运用流形上的轨迹线性化控制设计了慢变子系统的控制器。基于Lyapunov稳定性理论证明了闭环系统的稳定性。采用现场总线技术设计了多个子飞行器间的实时、可扩展通信架构。在此基础上,开发研制了多飞行器集联平台的原理样机软硬件系统。通过仿真测试和样机上的实际飞行测试,验证了集联平台设计与控制方法的有效性。这些工作为发展具备六维全向运动、可拓展的多飞行器集联平台奠定了理论和实验基础。

关键词: 多飞行器集联平台, 六维全向运动, 几何控制, 总线通信, 实际飞行测试

Abstract: An assembly composed of multiple aerial vehicles is capable of achieving omnidirectional motion in SE(3). Meanwhile, such assembly has advantages in payload and fault tolerance capacity compared with a single aircraft. Because of these characteristics, it has the potential to become an ideal platform for manipulation and observation. The mechanism and structure of the assembly aerial platform is designed. Such a platform has the ability to adjust its six-dimensional pose simultaneously. The dynamics of the overall system is investigated. Using singular perturbation theory, the entire system is partitioned into two subsystems, the fast varying system which represents the rotational motion of each aircraft, and the slowly varying system which represents the overall motion of the integrated assembly. Since the configuration space of the aircraft is non-Euclidean space, the controller of the slowly varying subsystem is designed using the trajectory linearization control on the manifold. On this basis, the stability of the overall closed loop system is proved using the Lyapunov theory. The real time communication architecture among the different sub-aircraft is designed. Furthermore, the software and the hardware of the real world protype is developed. Both simulation and real-world tests are conducted, validating the feasibility of the mechanism and control design for the novel assembly containing multiple aerial vehicles proposed.

Key words: aerial vehicles assembly, omnidirectional motion, geometric control, bus communication, real-world flight

中图分类号: