• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2022, Vol. 58 ›› Issue (14): 328-336.doi: 10.3901/JME.2022.14.328

• 交叉与前沿 • 上一篇    

扫码分享

基于深度学习的多孔介质渗透率预测

刘浩, 须颖, 罗杨泉, 肖海善   

  1. 广东工业大学机电工程学院 广州 510006
  • 收稿日期:2021-03-25 修回日期:2022-03-21 出版日期:2022-07-20 发布日期:2022-09-07
  • 通讯作者: 须颖(通信作者),男,1959年出生,博士,教授,博士研究生导师。主要研究方向超精密运动控制、X射线三维显微检测技术。E-mail:yxu@sypi.com.com
  • 作者简介:刘浩,男,1993年出生,博士研究生。主要研究方向为多孔介质空气轴承,深度学习。E-mail:liuhao687@163.com

Permeability Prediction of Porous Media Using Deep-learning Method

LIU Hao, XU Ying, LUO Yangquan, XIAO Haishan   

  1. School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006
  • Received:2021-03-25 Revised:2022-03-21 Online:2022-07-20 Published:2022-09-07

摘要: 渗透率是多孔介质的重要属性,衡量多孔介质对流体的阻碍能力。现有渗透率计算方法如有限体积法(Finite volumemethod,FVM)、格子玻尔兹曼(Lattice Boltzmann method,LBM)等有计算耗时缺点。因此,基于深度学习研究了多孔介质渗透率的快速预测。利用X射线断层扫描成像技术获得了40个真实多孔介质图像,利用人工合成多孔介质的方法扩充400个图像。在孔隙尺度上,利用传统有限体积法模拟制作了图像的渗透率。数据集共440套,按照9∶ 1划分了训练集和验证集。建立深度学习网络并进行渗透率预测。训练完成的网络在验证集上表现良好,误差在±15%内。结果表明,在渗透率预测速度上,深度学习网络预测时间是传统有限体积法的25%左右。验证了直接从图像到渗透率映射的可行性,同时也有助于理解孔隙与渗透率的关系。

关键词: 多孔介质, 渗透率, 深度学习

Abstract: Permeability, which represents the ability to transmit fluid, is the key parameter of porous media. The finite volume method (FVM) and lattice Boltzmann method (LBM) for calculating permeability have common shortcomings, i.e., long computational time. To address this difficulty, a deep-learning approach is proposed for rapidly predicting the permeability of porous media in this paper. First, 40 real porous media images are obtained using X-ray micro-computed tomography, and 400 realizations of porous media images are generated by the synthetic approach. Afterward, direct pore-scale modeling with the FVM is used to compute the permeability of porous media. A dataset including 440 porous media images is obtained and 90% of the samples are used for training, 10% are used for testing. A deep learning network is built for estimating permeability. Based on the trained model, satisfactory predictions of the permeability are achieved with an accuracy of ±14% in the testing dataset. It can be concluded that the trained deep-learning network takes tens of milliseconds to predict the permeability of one sample, about 10 000 times faster than FVM. The deep-learning approach provides a new way to calculate permeability from the pore microstructure of porous media, and it has the potential to facilitate the understanding of the relation between pore microstructure and permeability.

Key words: porous media, permeability, deep learning

中图分类号: