[1] YU Q, XIONG R, YANG R, et al. Online capacity estimation for lithium-ion batteries through joint estimation method[J]. Applied Energy, 2019, 255:113817. [2] JIN Y, LIU K, LANG J, et al. An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage[J]. Nature Energy, 2018, 3(9):732-738. [3] 陈泽宇,熊瑞,李世杰,等.电动载运工具锂离子电池低温极速加热方法研究[J].机械工程学报, 2021, 57(4):113-120. CHEN Zeyu, XIONG Rui, LI Shijie, et al. Extremely fast heating method of the lithium-ion battery at cold climate for electric vehicle[J]. Journal of Mechanical Engineering, 2021, 57(4):113-120. [4] 郑志坤,赵光金,金阳,等.基于库仑效率的退役锂离子动力电池储能梯次利用筛选[J].电工技术学报, 2019, 34(增刊1):388-395. ZHENG Zhikun, ZHAO Guangjin, JIN Yang, et al. The reutilization screening of retired electric vehicle lithium-ion battery based on coulombic efficiency[J]. Transactions of China Electrotechnical Society, 2019, 34(Suppl.1):388-395. [5] 黄鑫,冯旭宁,韩雪冰,等.车用并联电池组不均衡电流建模与仿真分析[J].机械工程学报, 2019, 55(20):44-51. HUANG Xin, FENG Xuning, HAN Xuebing, et al. Study on modelling and analysis of imbalanced current inside parallel-connected lithium-ion batteries for electric vehicle[J]. Journal of Mechanical Engineering, 2019, 55(20):44-51. [6] 刘伟龙,王丽芳,王立业.基于电动汽车工况识别预测的锂离子电池SOE估计[J].电工技术学报, 2018, 33(1):17-25. LIU Weilong, WANG Lifang, WANG Liye. Estimation of state-of-energy for electric vehicles based on the identification and prediction of driving condition[J]. Transactions of China Electrotechnical Society, 2018, 33(1):17-25. [7] 华旸,周思达,何瑢,等.车用锂离子动力电池组均衡管理系统研究进展[J].机械工程学报, 2019, 55(20):73-84. HUA Yang, ZHOU Sida, HE Rong, et al. Review on lithium-ion battery equilibrium technology applied for Evs[J]. Journal of Mechanical Engineering, 2019, 55(20):73-84. [8] YANG Z, PATIL D, FAHIMI B. Online estimation of capacity fade and power fade of lithium-ion batteries based on input-output response technique[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1):147-156. [9] ZOU C, MANZIE C, NESIC D. A framework for simplification of PDE-based lithium-ion battery models[J]. IEEE Transactions on Control Systems Technology, 2015, 24(5):1594-1609. [10] UNGUREAN L, CARSTOIU G, MICEA M V, et al. Battery state of health estimation:A structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2016, 41(2):151-181. [11] NG K S, MOO C S, CHEN Yiping, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries[J]. Applied Energy, 2009, 86(9):1506-1511. [12] GUO Z, QIU X, HOU G, et al. State of health estimation for lithium-ion batteries based on charging curves[J]. Journal of Power Sources, 2014, 249:457-462. [13] WENG C, SUN J, PENG H. A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring[J]. Journal of Power Sources, 2014, 258:228-237. [14] LI D Z, WANG W, ISMAIL F. A mutated particle filter technique for system state estimation and battery life prediction[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(8):2034-2043. [15] CHRISTENSEN J, NEWMAN J. Effect of anode film resistance on the charge/discharge capacity of a lithium-ion battery[J]. Journal of The Electrochemical Society, 2003, 150(11):A1416-A1420. [16] CHRISTENSEN J, NEWMAN J. A mathematical model for the lithium-ion negative electrode solid electrolyte interphase[J]. Journal of The Electrochemical Society, 2004, 151(11):A1977-A1988. [17] YU Q, XIONG R, LIN C, et al. Lithium-ion battery parameters and state-of-charge joint estimation based on H-infinity and unscented Kalman filters[J]. IEEE Transactions on Vehicular Technology, 2017, 66(10):8693-8701. [18] KIM IL-S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2010, 25(4):1013-1022. [19] HU X, JIANG J, CAO D, et al. Battery health prognosis for electric vehicles using sample entropy and sparse Bayesian predictive modelling[J]. IEEE Transactions on Industrial Electronics, 2015, 63(4):2645-2656. [20] HE W, WILLIAR N, OSTERMAN M, et al. Michael Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method[J]. Journal of Power Sources, 2011, 196(23):10314-10321. [21] LIN H A, LIAN T J, CHEN S M. Estimation of battery state of health using probabilistic neural network[J]. IEEE Transactions on Industrial Informatics, 2013, 9(2):679-685. [22] SINGH P, FENNIE J C, REEISNER D. Fuzzy logic modelling of state-of-charge and available capacity of nickel/metal hydride batteries[J]. Journal of Power Sources, 2004, 136(2):322-333. [23] NUHIC A, TERZIMEHIC T, SOCZKA-GUTH T, et al. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods[J]. Journal of Power Sources, 2013, 239:680-688. [24] WENG C, FENG X, SUN J, et al. State-of-health monitoring of lithium-ion battery modules and packs via incremental capacity peak tracking[J]. Applied Energy, 2016, 180:360-368. [25] BLOOM I, JANSEN A N, ABRAHAM D P, et al. Differential voltage analyses of high-power, lithium-ion cells:1. Techniques and application[J]. Journal of Power Sources, 2005, 139(1-2):295-303. [26] WU B, YUFIT V, MERLA Y, et al. Differential thermal voltammetry for tracking of degradation in lithium-ion batteries[J]. Journal of Power Sources, 2015, 273:495-501. [27] ZHANG Y, XIONG R, HE H, el al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries[J]. IEEE Transactions on Vehicular Technology, 2018, 67(7):5695-5705. [28] YU Z, XIAO L, LI H, et al. Model parameter identification for lithium batteries using the coevolutionary particle swarm optimization method[J]. IEEE Transactions on Industrial Electronics, 2017, 64(7):5690-5700. [29] LI H, PAN D, CHEN C P. Intelligent prognostics for battery health monitoring using the mean entropy and relevance vector machine[J]. IEEE Transactions on Systems Man and Cybernetics-Systems, 2014, 44(7):851-862. [30] YAO L, WANG Z, MA J. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles[J]. Journal of Power Sources, 2015, 293:548-561. [31] SHI B, ZHANG Y, YUAN C, et al. Entropy analysis of short-term heartbeat interval time series during regular walking[J]. Entropy, 2017, 19(10):568. [32] SHERSTINSKY A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network[J]. Physica D:Nonlinear Phenomena, 2020, 404:132306. [33] RAHMAN M A, ANWAR S, IZADIAN A. Electrochemical model parameter identification of a lithium-ion battery using particle swarm optimization method[J]. Journal of Power Sources, 2016, 307:86-97. [34] ZHOU D, ZHENG W, FU P, et al. Research on online estimation of available capacity of lithium batteries based on daily charging data[J]. Journal of Power Sources, 2020, 451:227713. [35] ZHENG Y, WANG J, QIN C, et al. A novel capacity estimation method based on charging curve sections for lithium-ion batteries in electric vehicles[J]. Energy, 2019, 185:361-371. |