机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 16-36.doi: 10.3901/JME.2021.16.016
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
宁祚良1,2, 陈刚1,2, 陈旭1,2
收稿日期:
2020-10-09
修回日期:
2021-08-11
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
陈刚(通信作者),男,1979年出生,博士,教授,博士研究生导师。主要研究方向为力学试验装置研发及应用、材料疲劳与断裂理论、装备结构完整性分析。E-mail:agang@tju.edu.cn
作者简介:
宁祚良,男,1997年出生。主要研究方向为材料与结构强度分析、本构理论及数值算法。E-mail:ningzuoliang2019@outlook.com
基金资助:
NING Zuoliang1,2, CHEN Gang1,2, CHEN Xu1,2
Received:
2020-10-09
Revised:
2021-08-11
Online:
2021-08-20
Published:
2021-11-16
摘要: 相较于常规单轴力学试验,多轴试验可在复杂应力状态下取得材料更为全面的力学性能或对结构件寿命与失效机理进行更准确的评估。随着控制技术与测量技术的进步,多轴测试技术得以快速发展。近30年来,国内外学者通过设计各类多轴试验对材料的疲劳、断裂、冲压成型性能、各向异性行为、微观变形机制等进行大量研究,多轴试验日益成为交叉各学科的重要测试手段。多轴试验中材料的应力状态较为复杂且易产生应力集中,有限元分析是取得其应力应变分布、优化试样或结构件形式的有效方法。按试样与加载形式的不同,分别对拉扭多轴试验、面内双轴试验、拉/压-压力复合作用试验、土三轴试验的试验方法、发展历史及在不同领域内的应用进行介绍;以环形试样拉/压试验与埃里克森试验为例,介绍基于有限元分析的多轴试验方法;以汽车发动机部件的多轴试验方法为例,介绍多轴试验测试技术在工程结构件的设计与寿命评估方面的应用。
中图分类号:
宁祚良, 陈刚, 陈旭. 多轴试验测试技术的发展与应用[J]. 机械工程学报, 2021, 57(16): 16-36.
NING Zuoliang, CHEN Gang, CHEN Xu. Development and Application of Multiaxial Testing Technique[J]. Journal of Mechanical Engineering, 2021, 57(16): 16-36.
[1] MCDOWELL D L,SOCIE D F. Transient and stable deformation behavior under cyclic nonproportional loading[M]. New York:ASTM International,1985. [2] OHASHI Y,TANAKA E,OOKA M. Plastic deformation behavior of type 316 stainless steel subject to out-of-phase strain cycles[J]. Journal of Engineering Materials and Technology,1985,107(4):286-292. [3] TANAKA E. A nonproportionality parameter and a cyclic viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening[M]. Paris:Elsevier,1994. [4] NITTA A,OGATA T,KUWABARA K. The effect of axial-torsional straining phase on elevated-temperature biaxial low-cycle fatigue life in sus 304 stainless steel[J]. J. Soc. Mater. Sci.,1987,36(403):376-382. [5] DE FREITAS M,REIS L,LI B. Comparative study on biaxial low-cycle fatigue behaviour of three structural steels[J]. Fatigue & Fracture of Engineering Materials & Structures,2006,29(12):992-999. [6] ITOH T,SAKANE M,OHNAMI M,et al. Nonproportional low cycle fatigue criterion for type 304 stainless steel[J]. Journal of Engineering Materials and Technology,1995,117(3):285-292. [7] DOONG S-H,SOCIE D F,ROBERTSON I M. Dislocation substructures and nonproportional hardening[J]. Journal of Engineering Materials and Technology,1990,112(4):456-464. [8] BARLAT F. Crystallographic texture,anisotropic yield surfaces and forming limits of sheet metals[J]. Materials Science and Engineering,1987,91:55-72. [9] BISWAS S,SUWAS S,SIKAND R,et al. Analysis of texture evolution in pure magnesium and the magnesium alloy AM30 during rod and tube extrusion[J]. Materials Science and Engineering:A,2011,528(10):3722-3729. [10] DEBIN S,GUOPING Y,WENCHEN X. Deformation history and the resultant microstructure and texture in backward tube spinning of Ti-6Al-2Zr-1Mo-1V[J]. Journal of Materials Processing Technology,2009,209(17):5713-5719. [11] SOCIE D F,MARQUIS G B. Multiaxial fatigue[M]. Pennsylvania:Society of Automotive Engineers Warrendale,2000. [12] FONTE M A,FREITAS M M. Semi-elliptical fatigue crack growth under rotating or reversed bending combined with steady torsion[J]. Fatigue & Fracture of Engineering Materials & Structures,1997,20(6):895-906. [13] FREITAS M D,REIS L,FONTE M D,et al. Effect of steady torsion on fatigue crack initiation and propagation under rotating bending:Multiaxial fatigue and mixed-mode cracking[J]. Engineering Fracture Mechanics,2011,78(5):826-835. [14] REIS L,LI B,DE FREITAS M. Biaxial fatigue for proportional and non-proportional loading paths[J]. Fatigue & Fracture of Engineering Materials & Structures,2004,27(9):775-784. [15] REIS L,LI B,LEITE M,et al. Effects of non-proportional loading paths on the orientation of fatigue crack path[J]. Fatigue & Fracture of Engineering Materials & Structures,2005,28(5):445-454. [16] REIS L,LI B,DE FREITAS M. Crack initiation and growth path under multiaxial fatigue loading in structural steels[J]. International Journal of Fatigue,2009,31(11):1660-1668. [17] GOUGH H J,POLLARD H V. The strength of metals under combined alternating stresses[J]. Proceedings of the Institution of Mechanical Engineers,1935,131(1):3-103. [18] PASCOE K J,DE VILLIERS J W R. Low cycle fatigue of steels under biaxial straining[J]. Journal of Strain Analysis,1967,2(2):117-126. [19] YOSHIDA F. Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature[J]. International Journal of Pressure Vessels and Piping,1990,44(2):207-223. [20] XIA Z,ELLYIN F. Biaxial ratcheting under strain or stress-controlled axial cycling with constant hoop stress[J]. Journal of Applied Mechanics,1994,61(2):422-428. [21] DELOBELLE P,ROBINET P,BOCHER L. Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel[J]. International Journal of Plasticity,1995,11(4):295-330. [22] HASSAN T,CORONA E,KYRIAKIDES S. Ratcheting in cyclic plasticity,part II:Multiaxial behavior[J]. International Journal of Plasticity,1992,8(2):117-146. [23] HAYHURST D R. A biaxial-tension creep-rupture testing machine[J]. Journal of Strain Analysis,1973,8(2):119-123. [24] THIENEL K C,ROSTáSY F S. Transient creep of concrete under biaxial stress and high temperature[J]. Cement and Concrete Research,1996,26(9):1409-1422. [25] BOEHLER J P,DEMMERLE S,KOSS S. A new direct biaxial testing machine for anisotropic materials[J]. Experimental Mechanics,1994,34(1):1-9. [26] MAKINDE A,THIBODEAU L,LEFEBVRE D,et al. Development of a servohydraulic machine for testing cruciform specimens[C/CD]//Proceedings of the SEM Spring Conference on Experimental Mechanics,F 01/1,1989. [27] BLüMEL K W,GERLACH J. Biaxial experimental approach to characterize formability of steel sheet metals[R]. SAE International. 1998. [28] BANABIC D,BARLAT F,CAZACU O,et al. Advances in anisotropy and formability[J]. International Journal of Material Forming,2010,3(3):165-189. [29] SHI H,CHEN G,WANG Y,et al. Ratcheting behavior of pressurized elbow pipe with local wall thinning[J]. International Journal of Pressure Vessels and Piping,2013,102-103:14-23. [30] MELLOR P B,PARMAR A. Plasticity Analysis of Sheet Metal Forming[M]. Boston:Springer,1978. [31] YOUNG R F,BIRD J E,DUNCAN J L. An automated hydraulic bulge tester[J]. Journal of Applied Metalworking,1981,2(1):11-18. [32] ROBINSON T,OU H,ARMSTRONG C G. Study on ring compression test using physical modelling and FE simulation[J]. Journal of Materials Processing Technology,2004,153-154:54-59. [33] DEMMERLE S,BOEHLER J P. Optimal design of biaxial tensile cruciform specimens[J]. Journal of the Mechanics and Physics of Solids,1993,41(1):143-181. [34] MORISHITA T,ITOH T,BAO Z. Multiaxial fatigue strength of type 316 stainless steel under push-pull,reversed torsion,cyclic inner and outer pressure loading[J]. International Journal of Pressure Vessels and Piping,2016,139-140:228-236. [35] SOCIE D F,WAILL L A,DITTMER D F. Biaxial Fatigue of Inconel 718 Including Mean Stress Effects[M]. New York:ASTM International,1985. [36] SCHIJVE J. Biaxial fatigue of metals[M]. New York:Springer International Publishing,2016. [37] GOUGH H,POLLARD H,CLENSHAW W. Some experiments on the resistance of metals to fatigue under combined stresses part I and part II[R]. Aeronautical Research Council (Great Britain),1952. [38] SUTTON M,HELM J,BOONE M. Experimental study of crack growth in thin sheet 2024-T3 aluminum under tension-Torsion loading[J]. International Journal of Fracture,2001,109:285-301. [39] ASTM E2207-02,Standard practice for strain-controlled axial-torsional fatigue testing with thin-walled tubular specimens[M]. New York:ASTM International,2002. [40] GOUGH H,POLLARD H. Strength of metals under combined alternating stresses[J]. Proceedings of The Institution of Mechanical Engineers,1935,131:3-103. [41] YUUKI R,MURAKAMI E,KITAGAWA H. Corrosion fatigue crack growth under biaxial stresses[J]. EGF,1989,3:285-300. [42] ITOH T,NAKATA T,SAKANE M,et al. Nonproportional low cycle fatigue of 6061 aluminum alloy under 14 strain paths[J]. European structural integrity society,1999,25:41-54. [43] LUO P,YAO W,LI P. A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens[J]. Fatigue & Fracture of Engineering Materials & Structures,2019,42(4):854-870. [44] WANG Y,YAO W. A multiaxial fatigue criterion for various metallic materials under proportional and nonproportional loading[J]. International Journal of Fatigue,2006,28:401-408. [45] ZHANG C C,YAO W. An improved multiaxial high-cycle fatigue criterion based on critical plane approach[J]. Fatigue & Fracture of Engineering Materials & Structures,2010,34:337-344. [46] 王英玉. 金属材料的多轴疲劳行为与寿命估算[D]. 南京:南京航空航天大学,2005. WANG Yingyu. Multiaxial fatigue damage and life prediction of metallic meterials[D]. Nanjing:Nanjing University of Aeronautics and Astronautics,2005. [47] XIA T X,YAO W,JI Y,et al. Study on the accumulative fatigue damage rules under multiaxial 2-stage step spectra constructed by loadings with similar lives[J]. Fatigue & Fracture of Engineering Materials & Structures,2015,38:830-880. [48] XIA T,YAO W,ZOU J,et al. A novel accumulative fatigue damage model for multiaxial step spectrum considering the variations of loading amplitude and loading path[J]. Fatigue & Fracture of Engineering Materials & Structures,2016,39(2):194-205. [49] XU S,HUANG D. A critical plane-strain energy density criterion for multiaxial low-cycle fatigue under non-proportional loading[J]. Fatigue & Fracture of Engineering Materials & Structures,1999,22:679-86. [50] JIN D,KIM K. Fatigue damage of medium carbon steel under sequential application of axial and torsional loading[J]. Fatigue & Fracture of Engineering Materials & Structures,2006,29:243-53. [51] JIN D. Fatigue life prediction of type 304 stainless steel under sequential biaxial loading[J]. International Journal of Fatigue,2006,28:289-99. [52] 金丹. 多轴非规则载荷下低周疲劳寿命预测[D]. 天津:天津大学,2004. JIN Dan. Multiaxial low cycle fatigue life prediction under irregular loadings[D]. Tianjin:Tianjin University,2004. [53] JIAO R. Modified kinematic hardening rule for multiaxial ratcheting prediction[J]. International Journal of Plasticity,2004,20:871-898. [54] CHEN X,JIAO R,KIM K S. Simulation of ratcheting strain to a high number of cycles under biaxial loading[J]. International Journal of Solids and Structures,2003,40(26):7449-7461. [55] CHEN X,JIAO R,KIM K S. On the Ohno-Wang kinematic hardening rules for multiaxial ratcheting modeling of medium carbon steel[J]. International Journal of Plasticity,2005,21(1):161-184. [56] KANG G,QING G,LX C,et al. Experimental study on uniaxial and multiaxial strain cyclic characteristics and ratcheting of 316L stainless steel[J]. Journal of Materials Science and Technology,2001,17(2):219-223. [57] KANG G,GAO Q,LX C,et al. Experimental study on uniaxial and nonproportionally multiaxial ratcheting of SS304 stainless steel at room and high temperatures[J]. Nuclear Engineering and Design,2002,216:13-26. [58] KANG G,KAN Q,ZHANG J,et al. Time-dependent ratchetting experiments of SS304 stainless steel[J]. International Journal of Plasticity,2006,22:858-894. [59] KANG G,GAO Q. Uniaxial and non-proportionally multiaxial ratcheting of U71Mn rail steel:Experiments and simulations[J]. Mechanics of Materials,2002,34:809-820. [60] KANG G,GAO Q,YANG X. A visco-plastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature[J]. Mechanics of Materials,2002,34:521-531. [61] SHANG D G,WANG J D. A new multiaxial fatigue damage model based on the critical plane approach[J]. International Journal of Fatigue,1998,20:241-245. [62] 尚德广,王德俊,姚卫星. 多轴非线性连续疲劳损伤累积模型的研究[J]. 固体力学学报,1999(4):3-5. SHANG Deguang,WANG Dejun,YAO Weixing. Study on nonlinear continuum multiaxial fatigue cumulative damage model[J]. Acta Mechanical Solida Sinia,1999(4):3-5. [63] 徐姣,尚德广,陈宏. 多轴块载加载下疲劳损伤累积方法研究[J]. 机械强度,2012,34(6):875-880. XU Jiao,SHANG Deguang,CHEN Hong. Study on method of fatigue damage accumulation under multiaxial block loading[J]. Journal of Mechanical Strength,2012,34(6):875-880. [64] 徐姣,尚德广,孙国芹,等. 多轴变幅加载下GH4169合金疲劳寿命预测[J]. 北京工业大学学报,2012,38(10):1462-1466. XU Jiao,SHANG Deguang,SUN Guoqin,et al. Fatigue life prediction for GH4169 superalloy under multiaxial variable amplitude loading[J]. Journal of Beijing University of Technology,2012,38(10):1462-1466. [65] 孙国芹,尚德广,王冬. 高温多轴变幅疲劳损伤累积[J]. 北京工业大学学报,2012,38(11):1629-1632. SUN Guoqin,SHANG Deguang,WANG Dong. Fatigue damage accumulation amplitude loading at under multiaxial variable high temperature[J]. Journal of Beijing University of Technology,2012,38(11):1629-1632. [66] SUN G,SHANG D G,BAO M. Multiaxial fatigue damage parameter and life prediction under low cycle loading for GH4169 alloy and other structural materials[J]. International Journal of Fatigue,2010,32:1108-15. [67] JIN JIE W,SHANG D G,SUN Y,et al. Thermo-mechanical fatigue life prediction method under multiaxial variable amplitude loading[J]. International Journal of Fatigue,2019,127:382-394. [68] LI F D,SHANG D G,ZHANG C C,et al. Thermomechanical fatigue life prediction method for nickel-based superalloy in aeroengine turbine discs under multiaxial loading[J]. International Journal of Damage Mechanics,2019,28(9):1344-1366. [69] REN Y P,SHANG D G,LI F D,et al. Life prediction approach based on the isothermal fatigue and creep damage under multiaxial thermo-mechanical loading[J]. International Journal of Damage Mechanics,2019,28(5):740-757. [70] BLASS J J,ZAMRIK S Y. Multiaxial low-cycle fatigue of type 304 stainless steel[J]. Journal of Engineering Materials and Technology-Transactions of the Asme,1977,99(3):283-286. [71] 尚德广,王德俊. 多轴疲劳强度[M]. 北京:科学出版社,2007. SHANG Deguang,WANG Dejun. Multiaxial fatigue strength[M]. Beijing:Science Press,2007. [72] FU S,WANG L,CHEN G,et al. A tension-torsional fatigue testing apparatus for micro-scale components[J]. Review of Scientific Instruments,2016,87(1):015111. [73] VIEIRA M A,FREITAS M,REIS L,et al. Development of a very high cycle fatigue (VHCF) multiaxial testing device[J]. Frattura ed Integrità Strutturale,2016,10:131-137. [74] VIEIRA M A,REIS L,FREITAS M,et al. Preliminary evaluation of the loading characteristics of biaxial tests at low and very high frequencies[J]. Procedia Structural Integrity,2016,1:205-211. [75] COSTA P,VIEIRA M,REIS L,et al. New specimen and horn design for combined tension and torsion ultrasonic fatigue testing in the very high cycle fatigue regime[J]. International Journal of Fatigue,2017,103:248-257. [76] KALLURI S,BONACUSE P. An axial-torsional,thermomechanical fatigue testing technique[M]. New York:ASTM International,1997. [77] BROOKES S P,KÜHN H J,SKROTZKI B,et al. Axial-torsional thermomechanical fatigue of a near-γ TiAl-alloy[J]. Materials Science and Engineering:A,2010,527(16):3829-3839. [78] WU X D,WAN M,ZHOU X B. Biaxial tensile testing of cruciform specimen under complex loading[J]. Journal of Materials Processing Technology,2005,168(1):181-183. [79] XIAO R. A review of cruciform biaxial tensile testing of sheet metals[J]. Experimental Techniques,2019,43(5):501-520. [80] MAKINDE A,THIBODEAU L,NEALE K. Development of an apparatus for biaxial testing using cruciform specimens[J]. Experimental Mechanics,1992,32:138-144. [81] BOEHLER J,DEMMERLE S,KOSS S. A new direct biaxial testing machine for anisotropic materials[J]. Experimental Mechanics,1994,34:1-9. [82] KUWABARA T,IKEDA S,KURODA K. Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension[J]. Journal of Materials Processing Technology,1998,80-81:517-523. [83] SHIMAMOTO A,SHIMOMURA T,NAM J. The development of a servo dynamic biaxial loading device[J]. Key Engineering Materials,2003,243-244:99-104. [84] GOZZI J,OLSSON A,LAGERQVIST O. Experimental investigation of the behavior of extra high strength steel[J]. Experimental Mechanics,2005,45:533-540. [85] HOFERLIN E,VAN BAEL A,HOUTTE P,et al. Design of a biaxial tensile test and its use for the validation of crystallographic yield loci[J]. Modelling and Simulation in Materials Science and Engineering,2000,8:423. [86] FRAUNHOFER. Dynamic material testing[EB]. (http://www.emi.fraunhofer.de). [87] FERRON G,MAKINDE A. Design and development of a biaxial strength testing device[J]. Journal of Testing Evaluation,1988,16:253-256. [88] XIAO R,LI X X,LANG L H,et al. Biaxial tensile testing of cruciform slim superalloy at elevated temperatures[J]. Materials & Design,2016,94:286-294. [89] LIN Q,SHI S,WANG L,et al. In-plane biaxial cyclic mechanical behavior of proton exchange membranes[J]. Journal of Power Sources,2017,360:495-503. [90] 鲁帅. 双轴拉伸原位力学测试装置的设计分析与试验研究[D]. 长春:吉林大学,2015. LU Shuai. Design analysis and experimental research of an in-situ biaxial tensile device for characterizing mechanics of materials[D]. Changchun:Jilin University,2015. [91] YU Y,WAN M,WU X D,et al. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM[J]. Journal of Materials Processing Technology,2002,123(1):67-70. [92] SHIRATORI E,IKEGAMI K. Experimental study of the subsequent yield surface by using cross-shaped specimens[J]. Journal of the Mechanics and Physics of Solids,1968,16:373-394. [93] OHTAKE Y,ROKUGAWA S,MASUMOTO H. Geometry determination of cruciform-type specimen and biaxial tensile test of c/c composites[J]. Key Engineering Materials,1999,164-165:151-154. [94] XIAO R,LI X,LANG L,et al. Design of biaxial tensile cruciform specimen based on simulation optimization[C]//20152nd International Conference on Machinery,Materials Engineering,Chemical Engineering and Biotechnology. Atlantis Press,2015:178-186. [95] YU Y,WAN M,WU X,et al. Design of a cruciform biaxial tensile specimen for limit strain analysis by FEM[J]. Journal of Materials Processing Technology,2002,123:67-70. [96] 韩非,万敏,吴向东,等. 基于极限应力分析的十字形双向拉伸试件设计[J]. 北京航空航天大学学报,2007,33(5):600-604. HAN Fei,WAN Min,WU Xiangdong,et al. FEM design of cruciform biaxial tensile specimen based on limit stress analysis[J]. Journal of Beijing University of Aeronautics and Astronautics,2007,33(5):600-604. [97] WU X,WAN M,ZHOU X-B. Biaxial tensile testing of cruciform specimen under complex loading[J]. Journal of Materials Processing Technology,2005,168:181-183. [98] RUI X,XIAO XING L,LI HUI L,et al. Forming limit in thermal cruciform biaxial tensile testing of titanium alloy[J]. Journal of Materials Processing Technology,2017,240:354-361. [99] 房涛涛,李晓星,肖瑞. 基于双向拉伸的热环境铝合金性能获取和分析[J]. 北京航空航天大学学报,2019,45(6):1195-1202. FANG Taotao,LI Xiaoxing,XIAO Rui. Acquisition and analysis of aluminum alloy property in thermal environment based on biaxial tension[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,45(6):1195-1202. [100] CHEN G,LIN Q,CHEN S. In-plane biaxial ratcheting behavior of PVDF UF membrane[J]. Polymer Testing,2016,50:41-48. [101] LIN Q,SHI S,WANG L,et al. Biaxial fatigue crack propagation behavior of perfluorosulfonic-acid membranes[J]. Journal of Power Sources,2018,384:58-65. [102] LIU Z,WANG J,GAO H,et al. Biaxial fatigue crack propagation behavior of ultrahigh molecular weight polyethylene reinforced by carbon nanofibers and hydroxyapatite[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2020,108(4):1603-1615. [103] YUXIAN M,GAO H,YAN Y,et al. Effects of phase difference and stress ratio on biaxial tension-tension fatigue crack propagation behavior of rolled ZK60 magnesium alloy[J]. Materials Today Communications,2020,24:101159. [104] CHEN G,FENG S,ZHANG X,et al. Deformation mechanisms of zirconium alloys under biaxial tension at room temperature[J]. Materials Letters,2020,271:127773. [105] CHENG Y,FU Y,XIN Y,et al. {10-12} twinning behavior under biaxial tension of Mg-3Al-1Zn plate[J]. International Journal of Plasticity,2020:102754. [106] LEFEBVRE D,CHEBL C,THIBODEAU L,et al. A high-strain biaxial-testing rig for thin-walled tubes under axial load and pressure[J]. Experimental Mechanics,1983,23:384-92. [107] MORISHITA T,ITOH T,SAKANE M,et al. Multiaxial fatigue property of Ti-6Al-4V using hollow cylinder specimen under push-pull and cyclic inner pressure loading[J]. International Journal of Fatigue,2016,87:370-80. [108] ANDREWS J,ELLISON E. A testing rig for cycling at high biaxial strains[J]. Journal of Strain Analysis for Engineering Design,1973,8:168-75. [109] TAKADA Y,MORISHITA T,HIYOSHI N,et al. Multiaxial fatigue property under cyclic inner pressure and cyclic axial loading[C]//The Proceedings of the Materials and Mechanics Conference,2017:OS0516. [110] 陈刚,瞿欢,崔云,等. 轴向及内压复合作用下Zr-Sn-Nb/Zr-Nb合金的多轴棘轮效应研究[J]. 天津大学学报,2020,53(2):162-168. CHEN Gang,QU Huan,CUI Yun,et al. A study on multiaxial ratcheting behavior of Zr-Sn-Nb/Zr-Nb alloys under a combined axial load and internal pressure[J]. Journal of Tianjin University,2020,53(2):162-168. [111] MCDOWELL D L. Stress state dependence of cyclic ratchetting behavior of two rail steels[J]. International Journal of Plasticity,1995,11(4):397-421. [112] DA COSTA M H S,PERES J M A,MELO M A C. Ratcheting behaviour of elasto-plastic thin-walled pipes under internal pressure and subjected to cyclic axial loading[J]. Thin-Walled Structures,2015,93:102-111. [113] KANG G,KAN Q,ZHANG J,et al. Time-dependent ratchetting experiments of SS304 stainless steel[J]. International Journal of Plasticity,2006,22(5):858-94. [114] JIAO R,KYRIAKIDES S. Ratcheting and wrinkling of tubes due to axial cycling under internal pressure:Part I experiments[J]. International Journal of Solids and Structures,2011,48(20):2814-2826. [115] PAQUETTE J,KYRIAKIDES S. Plastic buckling of tubes under axial compression and internal pressure[J]. International Journal of Mechanical Sciences,2006,48:855-867. [116] LEE L H N. Inelastic buckling of cylindrical shells under axial compression and internal pressure[C]//Proceedings of the Seventh Midwestern Mechanics Conference,1961,1:190-202. [117] FLLICE L,FRATINI L,MICARI F. A simple experiment to characterize material formability in tube hydroforming[J]. CIRP Annals,2001,50(1):181-184. [118] 崔晓磊. 内外压复合作用下管材塑性失稳行为研究[D]. 哈尔滨:哈尔滨工业大学,2015. CUI Xiaolei. Study on the plastic instability behavior of pipes under the combined action of internal and external pressures[D]. Harbin:Harbin Institute University,2015. [119] 刘东升. 高强度合金钢管材液压成形试验机的设计与开发[D]. 南京:南京理工大学,2011. LIU Dongsheng. Design and development of hydroforming test machine for high strength alloy steel pipe[D]. Nanjing:Nanjing University of Science and Technology,2011. [120] DESQUINES J,KOSS D,MOTTA A T,et al. The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA)[J]. Journal of Nuclear Materials,2011,412:250-267. [121] CHEN G,ZHANG X,XU D K,et al. Multiaxial ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure[J]. Journal of Nuclear Materials,2017,489:99-108. [122] CROSBY J,BURNS D,BENHAM P. Effect of stress biaxiality on the high-strain fatigue behavior of an aluminum-copper alloy[J]. Experimental Mechanics,1969,9:305-312. [123] FOUND M S,FERNANDO U S,MILLER K J. Requirements of a new multiaxial fatigue testing facility[M]. New York:ASTM International,1985. [124] FERNANDO U,MILLER K,BROWN M. Computer aided multiaxial fatigue testing[J]. Fatigue & Fracture of Engineering Materials & Structures,2007,13:387-398. [125] ELLYIN F,WOLODKO J D. Testing Facilities for Multiaxial Loading of Tubular Specimens[M]. New York:ASTM International,1997:7-24. [126] MORISHITA T,TAKADA Y,OGAWA F,et al. Multiaxial fatigue properties of stainless steel under seven loading paths consisting of cyclic inner pressure and push-pull loading[J]. Theoretical and Applied Fracture Mechanics,2018,96:387-397. [127] GAO Bingjun,CHEN Xu,CHEN Gang. Experiment research on ratcheting of pressurized pipe subjected reversed bending[C/CD]//SMiRT 18,Beijing,China. August 7-12,2005. [128] GAO B,CHEN G. Ratchetting and ratchetting boundary study of pressurized straight low carbon steel pipe under reversed bending[J]. International Journal of Pressure Vessels and Piping,2006,83:96-106. [129] 高炳军,陈旭,陈刚. 循环弯曲载荷作用下内压直管棘轮边界的确定[C]//第六届全国压力容器学术会议,杭州,2005. GAO Bingjun,CHEN Xu,CHEN Gang. Ratcheting boundary determination of pressurized piping subjected reversed bending[C]//The 6th National Conference on Pressure Vessels,Hangzhou,2005. [130] GAO B,CHEN G. Ratcheting study of pressurized elbows subjected to reversed in-plane bending[J]. Journal of Pressure Vessel Technology,2006,128:525. [131] 陈旭,高炳军. 内压弯管在面内循环弯曲载荷作用下棘轮效应的研究[C]//第七届全国压力容器学术会议,无锡,2009. CHEN Xu,GAO Bingjun. Ratcheting study of pressurized elbows subjected to reversed in-plane bending[C]//The 7th National Conference on Pressure Vessels,Wuxi,2009. [132] LIU C,SHI S,CAI Y. Ratcheting behavior of pressurized-bending elbow pipe after thermal aging[J]. International Journal of Pressure Vessels and Piping,2019,169:160-169. [133] LIU C,YU D,AKRAM W. Thermal aging effect on the ratcheting behavior of pressurized elbow pipe[J]. Journal of Pressure Vessel Technology,2018,140(2):1-9. [134] CHEN G,XU C,QU H. Ratcheting behavior of zirconium alloy tubes under combined cyclic axial load and internal pressure at 350℃[J]. Journal of Nuclear Materials,2017,491:138-148. [135] 王传志,过镇海,张秀琴. 二轴和三轴受压混凝土的强度试验[J]. 土木工程学报,1987(1):15-27. WANG Chuanzhi,GUO Zhenhai,ZHANG Xiuqin. Experimental investigation of concrete strength under biaxial and triaxial compressive stresses[J]. China Civil Engineering Journal,1987(1):15-27. [136] 牛学超,张庆喜,岳中文. 岩石三轴试验机的现状及发展趋势[J]. 岩土力学,2013,34(2):600-607. NIU Xuechao,ZHANG Qingxi,YUE Zhongwen. Current situation and development trends of rock triaxial testing machines[J]. Rock and Soil Mechanics,2013,34(2):600-607. [137] CHEN Z,HU Y,LI Q,et al. Behavior of concrete in water subjected to dynamic triaxial compression[J]. Journal of Engineering Mechanics-asce,2010,136(3):379-389. [138] 南京水利科学研究院. SL 237-1999土工试验规程[S]. 北京:中国水利水电出版社,1999. Nanjing Hydraulic Research Institute. SL 237-1999 specification of soil test[S]. Beijing:China Water & Power Press,1999. [139] 尚世明. 普通混凝土多轴动态性能试验研究[D]. 大连:大连理工大学,2013. SHANG Shiming. Experimental study on the multi-axial dynamic behavior of plain concrete[D]. Dalian:Dalian University of Technology,2013. [140] HUDSON J,CROUCH S,FAIRHURST C. Soft,stiff and servo-controlled testing machines:a review with reference to rock failure[J]. Engineering Geology,1972,6:155-89. [141] 傅芳才. 高温高压三轴试验机的现状及今后的发展趋势[J]. 中国地质科学院地质力学研究所所刊,1986,8:143-151. FU Fangcai. Triaxial test machine at high temperatures and high pressure:Review and prospect[J]. Bulletin of the Institute of Geomechanics CAGS,1986,8:143-151. [142] 王武林,刘远惠,陆以璐,等. RDT-10000型岩石高压动力三轴仪的研制[J]. 岩土力学,1989(2):69-82. WANG Wulin,LIU Yuanhui,LU Yilu,et al. Development of RDT-10000 type rock high pressure dynamic triaxial machine[J]. Rock and Soil Mechanics,1989(2):69-82. [143] 许东俊,幸志坚,李小春,等. RT3型岩石高压真三轴仪的研制[J]. 岩土力学,1990(2):1-14. XU Dongjun,XING Zhijian,LI Xiaochun,et al. Development of RT3 type rock high pressure true triaxial machine[J]. Rock and Soil Mechanics,1990(2):1-14. [144] 宋玉普,吕培印,侯景鹏. 有侧压混凝土的变速率劈拉强度试验及其破坏准则研究[J]. 水利学报,2002(3):1-5. SONG Yupu,LÜ Peiyin,HOU Jingpeng. Concrete splitting tensile strength and failure criterion for different loading rate and lateral stress[J]. Journal of Hydraulic Engineering,2002(3):1-5. [145] 闫东明,林皋. 单向恒定侧压下混凝土动态抗压特性试验研究[J]. 爆炸与冲击,2007(2):121-125. YAN Dongming,LIN Gao. Experimental study on dynamic properties of concrete with one-dimensional confining pressure[J]. Explosion and Shock Waves,2007(2):121-125. [146] 赵东拂,宋玉普,李木国. 混凝土多轴疲劳试验系统与试验技术[J]. 岩石力学与工程学报,2004(2):187-191. ZHAO Dongfu,SONG Yupu,LI Muguo. Multiaxial fatigue experimental apparatus of concrete and relevant technics[J]. Chinese Journal of Rock Mechanics And Engineering,2004(2):187-191. [147] 孙晓明,何满潮,刘成禹,等. 真三轴软岩非线性力学试验系统研制[J]. 岩石力学与工程学报,2005(16):2870-2874. SUN Xiaoming,HE Manchao,LIU Chengyu,et al. Development of nonlinear triaxial mechanical experiment system for soft rock specimen[J]. Chinese Journal of Rock Mechanics And Engineering,2005(16):2870-2874. [148] 朱维申,张乾兵,李勇,等. 真三轴荷载条件下大型地质力学模型试验系统的研制及其应用[J]. 岩石力学与工程学报,2010,29(1):1-7. ZHU Weishen,ZHANG Qianbing,LI Yong,et al. Development of large-scale geomechanical model test system under true triaxial loading and its applications[J]. Chinese Journal of Rock Mechanics And Engineering,2010,29(1):1-7. [149] PRICE E G. Hydride orientation and tensile properties of Zr-2.5 wt% Nb pressure tubing hydrided while internally pressurized[J]. Canadian Metallurgical Quarterly,1972,11(1):129-138. [150] UNI EN ISO 8496-2014 Metallic materials-Tube-Ring tensile test[S]. Roman:Italian Body for the Standardisation of the Iron and Steel Industry,2014. [151] 谢梦. N36锆合金的氢化物应力再取向及环向拉伸性能研究[D]. 成都:成都理工大学,2015. XIE Meng. Study on hydride stress reorientation and hoop tensile properties of N36 zirconium alloy[D]. Chengdu:Chengdu University of Technology,2015. [152] LEE K W,HONG S I. Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes[J]. Journal of Alloys and Compounds,2002,346(1):302-307. [153] ARSENE S,BAI J. A new approach to measuring transverse properties of structural tubing by a ring test[J]. Journal of Testing and Evaluation,1996,24(6):386-391. [154] KIM J S,KIM Y J,KOOK D H,et al. A study on hydride reorientation of Zircaloy-4 cladding tube under stress[J]. Journal of Nuclear Materials,2015,456:246-252. [155] LINK R E,ARSENE S,BAI J. A new approach to measuring transverse properties of structural tubing by a ring test[J]. Journal of Testing and Evaluation,1996,24(6):386-391. [156] DICK C P,KORKOLIS Y P. Mechanics and full-field deformation study of the Ring Hoop Tension Test[J]. International Journal of Solids and Structures,2014,51(18):3042-3057. [157] DICK C P,KORKOLIS Y P. Assessment of Anisotropy of Extruded Tubes by Ring Hoop Tension Test[J]. Procedia Engineering,2014,81:2261-2266. [158] 查微微. 镁合金管材力学性能环向拉伸测试方法[D]. 哈尔滨:哈尔滨工业大学,2007. ZHA Weiwei. Circumferential tensile test method for mechanical properties of magnesium alloy pipes[D]. Harbin:Harbin Institute Technology,2007. [159] 何祝斌,苑世剑,查微微,等. 管材环状试样拉伸变形的受力和变形分析[J]. 金属学报,2008(4):423-427. HE Zhubin,YUAN Shijian,ZHA Weiwei,et al. Force and deformation analysis of tube ring specimen during hoop tension test[J]. ACTA METALLURGICA SINICA,2008(4):423-427. [160] 闫萌,彭倩,王朋飞,等. N36锆合金包壳管周向拉伸试验方法研究[J]. 核动力工程,2012,33(S2):13-16. YAN Meng,PENG Qian,WANG Pengfei,et al. Research on hoop tensile test method for N36 zirconium tube[J]. Nuclear Power Engineering,2012,33(S2):13-16. [161] 周金彪,贺小华,周昌玉. 试验参数对管材环向拉伸方法的影响[J]. 南京工业大学学报,2018,40(5):90-96. ZHOU Jinbiao,HE Xiaohua,ZHOU Changyu. Effects of testing parameters on hoop tensile test of tubes[J]. Journal of Nanjing University of Technology,2018,40(5):90-96. [162] 李江华. Zr-Sn-Nb合金包壳管中氢化物析出机制及疲劳开裂行为研究[D]. 天津:天津大学,2020. LI Jianghua. Study on hydride precipitation mechanism and fatigue cracking behavior of Zr-Sn-Nb alloy cladding tube[D]. Tianjin:Tianjin University,2020. [163] CHEN H,CAI L X. Unified ring-compression model for determining tensile properties of tubular materials[J]. Materials Today Communications,2017,13:210-220. [164] TIMOSHENKO S. On the distribution of stresses in a circular ring compressed by two forces acting along a diameter[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1922,44(263):1014-1019. [165] YELLAREDDY T,REID S R. On obtaining material properties from the ring compression test[J]. Nuclear Engineering and Design,1979,52:257-263. [166] REID S R,REDDY T Y. Effect of strain hardening on the lateral compression of tubes between rigid plates[J]. International Journal of Solids and Structures,1978,14:213-225. [167] NEMAT-ALLA M. Reproducing hoop stress-strain behavior for tubular material using lateral compression test[J]. International Journal of Mechanical Sciences,2003,45:605-621. [168] GUPTA N K,SEKHON G S,GUPTA P. Study of lateral compression of round metallic tubes[J]. Thin-Walled Structures,2005,43:895-922. [169] LEU D K. Finite-element simulation of the lateral compression of aluminium tube between rigid plates[J]. International Journal of Mechanical Sciences,1999,41:621-638. [170] ZHANG D W,LI H,LI H W,et al. Friction factor evaluation by FEM and experiment for TA15 titanium alloy in isothermal forming process[J]. The International Journal of Advanced Manufacturing Technology,2012,60(5-8):527-536. [171] SOFUOGLU H,RASTY J. On the measurement of friction coefficient utilizing the ring compression test[J]. Tribology International,1999,32:327-335. [172] KUNOGI M. On plastic deformation of hollow cylinders under axial compressive loading[J]. Rep. Sci. Res. Inst. Tokyo,1954,1:63-92. [173] MALE A T,COCKCROFT M G. A method for the determination of the coefficient of friction of metals under conditions of bulk plastic deformation[J]. J. Inst. Met.,1964,93:38. [174] 胡忠,朱利华,李家庆. 圆环压缩过程的有限元模拟——一种标定摩擦系数理论曲线的新方法[J]. 金属学报,1997(4):337-344. HU Zhong,ZHU Lihua,LI Jiaqing. Numerical simulation on ring compression:A new approch to determine calibration curves of friction coefficient[J]. ACTA METALLURGICA SINICA,1997(4):337-344. [175] ZHANG D W,LIU B,LI J,et al. Variation of the friction conditions in cold ring compression tests of medium carbon steel[J]. Friction,2019:1-12. [176] ERICHSEN A M. Process and apparatus for testing metal sheets and plates[P]. GB Patent,1913(91228571). [177] KAFTANOGLU B,ALEXANDER J M. An investigation of the Erichsen test[J]. J. Inst. Metals.,1961,90:457-470. [178] 宝山钢铁股份有限公司,浙江省特种设备科学研究院,上海申力试验机有限公司,等. 金属材料-薄板和薄带-埃里克森杯突试验[S]. 北京:中国标准出版社,2020. Bao Steel,Zhejiang Academy of Special Equipment Science,Shanghai Shenli Testing Machine Company,et al. Metallic materials-Sheet and strip-Erichsen cupping test[S]. Beijing:China Quality and Standard Publishing,2020. [179] TAKUDA H,YOSHII T,HATTA N. Finite-element analysis of the formability of a magnesium-based alloy AZ31 sheet[J]. Journal of Materials Processing Technology,1999,89-90:135-140. [180] GAVRUS A,BANU M,RAGNEAU E,et al. An inverse analysis approach of the Erichsen test starting from a finite element model[J]. International Journal of Material Forming,2008,1:5-8. [181] GAVRUS A,BANU M,RAGNEAU E,et al. Identification of Sheet Material Parameters from an Inverse Analysis of the Erichsen Test[J]. The Annals of "Dunarea de Jos" University of Galati,Fascicle V,Technologies in machine building,2007,25:93-98. [182] OLEKSIK V,GAVRUS A,PĂUNOIU V,et al. Experimental and finite element analysis of Erichsen test. Application to identification of sheet metallic material behaviour[J]. Technologies in Machine Building,2009,27:81-86. [183] ZHENG W,ZHANG S H,SORGENTE D,et al. Approach of using a ductile fracture criterion in deep drawing of magnesium alloy cylindrical cups under non-isothermal condition[J]. Proceedings of The Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2007,221:981-986. [184] 何维均,程明,张士宏,等. AZ31镁合金板材高温杯突试验及其数值模拟[J]. 轻合金加工技术,2009,37(10):34-38. HE Weijun,CHENG Ming,ZHANG Shihong,et al. Erichsen test and numerical simulation of AZ31 magnesium alloy sheets at various temperatures[J]. Light Alloy Fabrication Technology,2009,37(10):34-38. [185] MARCO S M,STARKEY W L. A concept of fatigue damage.[J]. Trans. ASME,1954,76:627-632. [186] 周迅. 曲轴疲劳行为及可靠性的理论与试验研究[D]. 杭州:浙江大学,2006. ZHOU Xun. Theoretical and experimental research on crankshaft fatigue behavior and reliability[D]. Hangzhou:Zhejiang University,2006. [187] 谢丽颖. 汽车发动机曲轴疲劳试验方法[J]. 汽车工艺与材料,2006(3):9-12. XIE Liying. Study on bending fatigue test of automotive engine crankshaft[J]. Automobile Technology & Material,2006(3):9-12. [188] 黄钟瑜. HQF谐振式曲轴疲劳试验机的设计[J]. 内燃机工程,1987,8(1):19-26. HUANG Zhongyu. Design of HQF resonant fatigue test bench for crankshaft[J]. Chinese Internal Combustion Engine Engineering,1987,8(1):19-26. [189] 徐家炽,冯美斌,徐卫,等. DC-1电动谐振式曲轴疲劳试验装置的研制[J]. 内燃机工程,1991(2):6-16. XU Jiachi,FENG Meibin,XU Wei,et al. Development of DG-1 electrodynamic resonant fatigue test machine for crankshaft[J]. Chinese Internal Combustion Engine Engineering,1991,12(2):6-16. [190] 俞小莉,周迅,刘震涛,等. 智能型曲轴弯曲疲劳试验系统[J]. 兵工学报,2004(3):368-371. YU Xiaoli,ZHOU Xun,LIU Zhentao,et al. An intelligent fatigue test system for crankshaft[J]. ACTA ARMAMENTARII,2004(3):368-371. [191] 姬战国,尹庭林,尹芳芳,等. 微机控制曲轴疲劳试验台的研发[J]. 工程与试验,2009,49(4):54-56. JI Zhanguo,YIN Tinglin,YIN Fangfang,et al. Development of microcomputer-controlled crankshaft fatigue testing rig[J]. Engineering & Test,2009,49(4):54-56. [192] 翟绍春,黎观生,于士博,等. 曲轴疲劳试验系统研究与开发[J]. 机电工程技术,2018,47(12):50-52. ZHAI Shaochun,LI Guansheng,YU Shibo,et al. Research and development of crankshaft fatigue test system[J]. Mechanical & Electrical Engineering Technology,2018,47(12):50-52. [193] ZHANG G. Fatigue life prediction of crankshaft made of material 48MnV based on fatigue tests,dynamic simulation and FEA[J]. Chinese Journal of Mechanical Engineering,2006,19(2):307-311. [194] PINGCHEN X,YU X,FUHU R,et al. Prediction of crankshaft fatigue limit load by crack-modeling technique[J]. Journal of Advanced Manufacturing Systems,2011,10(01):127-134. [195] CHEN X,YU X,HU R,et al. Statistical distribution of crankshaft fatigue:Experiment and modeling[J]. Engineering Failure Analysis,2014,42:210-220. [196] 刘海燕,覃文洁,李欣. 柴油机曲轴的多轴高周疲劳寿命估算[J]. 机械强度,2013,35(6):844-849. LIU Haiyan,QIN Wenjie,LI Xin. Multi-axial high cycle fatigue life estimation for diesel crankshaft[J]. Journal of Mechanical Strength,2013,35(6):844-849. [197] 崔广军. 曲轴疲劳寿命的有限元和多体动力学联合仿真研究[J]. 机械强度,2016,38(2):394-398. CUI Guangjun. Research on co-simulation of finite element method and the multi body dynamics of the crankshaft fatigue life[J]. Journal of Mechanical Strength,2016,38(2):394-398. [198] 孙嵩松,俞小莉,李建锋. 基于多轴疲劳理论的曲轴结构等效疲劳研究[J]. 汽车工程,2016,38(8):1001-1005. SUN Gaosong,YU Xiaoli,LI Jianfeng. A study on the equivalent fatigue of crankshaft structure based on the theory of multi-axial fatigue[J]. Automotive Engineering,2016,38(8):1001-1005. [199] SONGSONG S,MAOSONG W,HUI W,et al. Study of component high cycle bending fatigue based on a new critical distance approach[J]. Engineering Failure Analysis,2019,102:395-406. [200] 孙耀国. 机体关键部位机械疲劳分析方法研究[D]. 杭州:浙江大学,2011. SUN Yaoguo. Research on analysis method of mechanical fatigue of key parts of airframe[D]. Hangzhou:Zhejiang University,2011. [201] 陈学罡,吴鹏. 发动机气缸体疲劳试验[J]. 汽车工艺与材料,2014(1):32-35. CHEN Xuegang,WU Peng. Fatigue test of engine cylinder block[J]. Automobile Technology & Material,2014(1):32-35. [202] 陈学罡,李慧远,田雨苗. 发动机气缸体疲劳试验研究[J]. 汽车工艺与材料,2006(3):6-9. CHEN Xuegang,LI Huiyuan,TIAN Yumiao. Research on fatigue test of engine cylinder block[J]. Automobile Technology & Material,2006(3):6-9. [203] 薛良君,楼狄明,张松杨. 16V280ZJB型柴油机机体应力测试与分析[J]. 内燃机车,2004(9):8-10,49. XUE Liangjun,LOU Diming,ZHANG Songyang. Stress determination and analysis of 16V280ZJB diesel engine's body[J]. Diesel Locomotives,2004(9):8-10,49. [204] 曹磊,赵雨东,左孔天,等. 发动机缸体主轴承座及主轴承盖的动态应力和温度测量[J]. 内燃机工程,2007(1):35,38. CAO Lei,ZHAO Yudong,ZUO Kongtian,et al. Measurement of dynamic stresses and temperatures of main bearing walls and caps on an engine block[J]. Diesel Locomotives,2007(1):35,38. [205] 覃涛,李刚炎. 基于试验数据的气缸疲劳寿命预测[J]. 液压与气动,2010(3):55-58. QIN Tao,LI Gangyan. Cylinder fatigue life prediction based on test data[J]. Chinese Hydraulics & Pneumatics,2010(3):55-58. [206] 刘震涛,张鹏伟,李京鲁,等. 基于统计学的机体疲劳强度分析方法研究[J]. 内燃机工程,2012,33(4):77-81. LIU Zhentao,ZHANG Pengwei,LI Jinglu,et al. Study of method analyzing cylinder block fatigue strength based on statistics[J]. Diesel Locomotives,2012,33(4):77-81. [207] 陈晓平,李京鲁,季炳伟,等. 基于临界平面法的发动机机体疲劳寿命预测研究[J]. 内燃机工程,2015,36(5):122-127. CHNE Xiaoping,LI Jinglu,JI Bingwei,et al. Engine body fatigue life prediction based on critical plane method[J]. Diesel Locomotives,2015,36(5):122-127. [208] 胡蓉蓉,佟宇,袁爽,等. 发动机气缸体疲劳试验研究[J]. 车用发动机,2012(6):69-71. HU Rongrong,DONG Yu,YUAN Shuang,et al. Fatigue test of engine cylinder block[J]. Vehicle Engine,2012(6):69-71. |
[1] | 董庆兵, 陈壮, 罗振涛, 张杰, 魏静. 三维线接触微动界面疲劳寿命预测及断裂行为研究[J]. 机械工程学报, 2024, 60(8): 107-120. |
[2] | 赵久成, 赵宏伟. 材料多轴疲劳试验技术的发展与展望[J]. 机械工程学报, 2023, 59(20): 179-197. |
[3] | 孙国芹, 尚德广, 王杨. 金属多轴疲劳行为与寿命预测研究进展[J]. 机械工程学报, 2021, 57(16): 153-172. |
[4] | 杨冰, 代胜, 廖贞, 孟飞, 肖守讷, 阳光武, 朱涛. 拉扭应力幅比对LZ50钢短裂纹行为的影响[J]. 机械工程学报, 2020, 56(16): 33-43. |
[5] | 安琪, 赵华, 刘映安, 付茂海. 基于多轴准则的货车车体疲劳寿命分析方法[J]. 机械工程学报, 2019, 55(2): 64-72. |
[6] | 刘俭辉,王生楠,黄新春,傅益战. 基于损伤力学-临界面法预估多轴疲劳寿命[J]. 机械工程学报, 2015, 51(20): 120-127. |
[7] | 夏天翔, 姚卫星, 刘向民, 嵇应凤. 考虑材料分散性后Miner理论在多轴两级阶梯谱下的适用性研究[J]. 机械工程学报, 2015, 51(14): 38-45. |
[8] | 陈吉平;丁智平;曾军;白晓鹏;王卫峰. 基于灰色理论镍基单晶合金多轴非比例加载低周疲劳研究[J]. , 2014, 50(24): 66-73. |
[9] | 姜潮;李博川;韩旭. 一种考虑路径影响的剪切式多轴疲劳寿命模型[J]. , 2014, 50(16): 21-26. |
[10] | 吴志荣;胡绪腾;宋迎东. 基于最大切应变幅和修正SWT参数的多轴疲劳寿命预测模型[J]. , 2013, 49(2): 59-66. |
[11] | 李静;孙强;李春旺;乔艳江;张忠平. 一种新的多轴疲劳寿命预测方法[J]. , 2009, 45(9): 285-290. |
[12] | 赵勇铭;宋迎东. 椭圆方程式的多轴疲劳寿命预测模型[J]. , 2009, 45(11): 312-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||