机械工程学报 ›› 2021, Vol. 57 ›› Issue (16): 37-65.doi: 10.3901/JME.2021.16.037
• 特邀专刊:先进设计制造技术前沿:重要装备的可靠性保障 • 上一篇 下一篇
吴圣川1, 吴正凯1, 康国政1, 陈伟球2, 李江宇3, 柯燎亮4, 王同敏5, 肖体乔6, 袁清习7, 胡春明8
收稿日期:
2020-09-29
修回日期:
2021-03-19
出版日期:
2021-08-20
发布日期:
2021-11-16
通讯作者:
吴圣川(通信作者),男,1979年出生,博士后,研究员,博士研究生导师。主要研究方向为先进结构损伤容限设计及微结构损伤演化的先进光源三维原位成像表征和高通量试验机研发。E-mail:wusc@swjtu.edu.cn
基金资助:
WU Shengchuan1, WU Zhengkai1, KANG Guozheng1, CHEN Weiqiu2, LI Jiangyu3, KE Liaoliang4, WANG Tongmin5, XIAO Tiqiao6, YUAN Qingxi7, HU Chunming8
Received:
2020-09-29
Revised:
2021-03-19
Online:
2021-08-20
Published:
2021-11-16
摘要: 先进材料的多维多尺度高通量表征可显著提高新材料研发效率,加快新材料应用进程,为材料及结构的可靠性服役和全寿命管理提供科学依据。介绍材料多维多尺度高通量表征技术的背景与内涵,然后对高通量样品制备与表征、多维多尺度关联成像、高通量原位表征等技术的发展进行了系统介绍,讨论多维多尺度高通量表征技术的前沿应用和技术局限性,最后对其未来发展趋势及面临的挑战进行了解析,指出这些技术挑战直接关系到高通量表征技术在先进材料及结构服役行为研究中的应用,展望多维多尺度高通量表征的若干发展方向,从而为建立材料微结构和服役性能的映射关系、跨尺度揭示工程部件的伤损机理和失效模式、推进先进材料的研发与应用进程提供参考。
中图分类号:
吴圣川, 吴正凯, 康国政, 陈伟球, 李江宇, 柯燎亮, 王同敏, 肖体乔, 袁清习, 胡春明. 先进材料多维多尺度高通量表征研究进展[J]. 机械工程学报, 2021, 57(16): 37-65.
WU Shengchuan, WU Zhengkai, KANG Guozheng, CHEN Weiqiu, LI Jiangyu, KE Liaoliang, WANG Tongmin, XIAO Tiqiao, YUAN Qingxi, HU Chunming. Research Progress on Multi-dimensional and Multi-scale High-throughput Characterization for Advanced Materials[J]. Journal of Mechanical Engineering, 2021, 57(16): 37-65.
[1] 黄晓旭,吴桂林,钟虓,等. 先进材料多维多尺度高通量表征技术[J]. 电子显微学报,2016,35(6):567-568. HUANG Xiaoxu,WU Guilin,ZHONG Xiao,et al. Multi-dimensional multi-scale and high-flux characterization techniques for advanced materials[J]. Journal of Chinese Electron Microscopy Society,2016,35(6):567-568. [2] 关洪达,李才巨,高鹏,等. 材料高通量制备与表征技术研究进展[J]. 稀有金属材料与工程,2019,48(12):4131-4140. GUANG Hongda,LI Caiju,GAO Peng,et al. Research progress in high throughput preparation and characterization of materials[J]. Rare Metal Materials and Engineering,2019,48(12):4131-4140. [3] OLSON G B,KUEHMANN C J. Materials genomics:From CALPHAD to flight[J]. Scripta Materialia,2014,70:25-30. [4] 向勇,闫宗楷,朱焱麟,等. 材料基因组技术前沿进展[J]. 电子科技大学学报,2016,45(4):634-49. XIANG Yong,YAN Zongkai,ZHU Yanlin,et al. Progress on material genome technology[J]. Journal of the University of Electronic Science and Technology of China,2016,45(4):634-49. [5] 赵继成. 材料基因组计划简介[J]. 自然杂志,2014,36(2):89-104. ZAO Jicheng. Introduction to the materials genome project[J]. Chinese Journal of Nature,2014,36(2):89-104. [6] 赵继成. 材料基因组计划中的高通量实验方法[J]. 科学通报,2013,58(35):3647-3655. ZHAO Jicheng. High-throughput experimental tools for the Materials Genome Initiative[J]. Chinese Science Bulletin,2013,58(35):3647-3655. [7] 沈自才,代巍,马子良. 航天材料基因工程及其若干关键技术[J]. 航天器环境工程,2017,34(3):324-329. SHEN Zicai,DAI Wei,MA Ziliang. Genetic engineering for aerospace materials and related key technologies[J]. Spacecraft Environment Engineering,2017,34(3):324-329. [8] 王海舟,汪洪,丁洪,等. 材料的高通量制备与表征技术[J]. 科技导报,2015,33(10):31-49. WANG Haizhou,WANG Hong,DING Hong,et al. Progress in high-throughput materials synthesis and characterization[J]. Science Technology Review,2015,33(10):31-49. [9] MUSTER T H,TRINCHI A,MARKLEY T A,et al. A review of high throughput and combinatorial electrochemistry[J]. Electrochimica Acta,2011,56(27):9679-9699. [10] HANAK J J. The "multiple-sample concept" in materials research:Synthesis,compositional analysis and testing of entire multicomponent systems[J]. Journal of Materials Science,1970,5(11):964-971. [11] ZHAO J C,JACKSON M R,PELUSO L A,et al. A diffusion multiple approach for the accelerated design of structural materials[J]. MRS Bulletin,2002,27(4):324-329. [12] ZHU L L,QI H Y,JIANG L,et al. Experimental determination of the Ni-Cr-Ru phase diagram and thermodynamic reassessments of the Cr-Ru and Ni-Cr-Ru systems[J]. Intermetallics,2015,64:86-95. [13] ZHANG Q F,ZHAO J C. Extracting interdiffusion coefficients from binary diffusion couples using traditional methods and a forward-simulation method[J]. Intermetallics,2013,34:132-141. [14] 张学习,郑忠,高莹,等. 金属基复合材料高通量制备及表征技术研究进展[J]. 金属学报,2019,55(1):109-125. ZHANG Xuexi,ZHENG Zhong,GAO Ying,et al. Progress in high throughput fabrication and characterization of metal matrix composites[J]. Acta Metallurgica Sinica,2019,55(1):109-125. [15] MAO S S. High throughput growth and characterization of thin film materials[J]. Journal of Crystal Growth,2013,379:123-130. [16] LIU Y H,PADMANABHAN J,CHEUNG B,et al. Combinatorial development of antibacterial Zr-Cu-Al-Ag thin film metallic glasses[J]. Scientific Reports,2016,6(1):26950. [17] MCCLUSKEY P J,VLASSAK J J. Combinatorial nanocalorimetry[J]. Journal of Materials Research,2010,25(11):2086-2100. [18] 王薪,朱礼龙,方姣,等. 基于"材料基因组工程"的3种方法在镍基高温合金中的应用[J]. 科技导报,2015,33(10):79-86. WANG Xin,ZHU Lilong,FANG Jiao,et al. Applications of "Materials Genome Engineering" based methods in Nickel-based superalloys[J]. Science & Technology Review,2015,33(10):79-86. [19] ZHAO J C. High-throughput experimental tools for the materials genome initiative[J]. Chinese Science Bulletin,2014,59(15):1652-1661. [20] ZHAO J C,JACKSON M R,PELUSO L A,et al. A diffusion-multiple approach for mapping phase diagrams,hardness,and elastic modulus[J]. JOM,2002,54(7):42-45. [21] BAUFELD B,BIEST O V,GAULT R. Additive manufacturing of Ti-6Al-4V components by shaped metal deposition:Microstructure and mechanical properties[J]. Materials & Design,2010,31:S106-S111. [22] SCHWENDNER K I,BANERJEE R,COLLINS P C,et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia,2001,45(10):1123-1129. [23] ARNOLD C B,SERRA P,PIQUÉ A. Laser direct-write techniques for printing of complex materials[J]. MRS Bulletin,2007,32(1):23-31. [24] AGRAWAL A K,DE BELLEFON G M,THOMA D. High-throughput experimentation for microstructural design in additively manufactured 316L stainless steel[J]. Materials Science & Engineering A,2020,793:139841. [25] NIAN Q,WANG Y F,YANG Y L,et al. Direct laser writing of nanodiamond films from graphite under ambient conditions[J]. Scientific Reports,2015,4(1):6612. [26] JIN Z W,MURAKAMI M,FUKUMURA T,et al. Combinatorial laser MBE synthesis of 3d ion doped epitaxial ZnO thin films[J]. Journal of Crystal Growth,2000,215:55-58. [27] TAKEUCHI I,CHANG K,SHARMA R P,et al. Microstructural properties of (Ba,Sr)TiO3 films fabricated from BaF2/SrF2/TiO2 amorphous multilayers using the combinatorial precursor method[J]. Journal of Applied Physics,2001,90(5):2474-2478. [28] YOO Y K,XUE Q,CHU Y S,et al. Identification of amorphous phases in the Fe-Ni-Co ternary alloy system using continuous phase diagram material chips[J]. Intermetallics,2006,14(3):241-247. [29] WANG J S,YOO Y,GAO C,et al. Identification of a blue photoluminescent composite material from a combinatorial library[J]. Science,1998,279(13):1712-1714. [30] CHEN L,BAO J,GAO C,et al. Combinatorial synthesis of insoluble oxide library from ultrafine/nano particle suspension using a drop-on-demand inkjet delivery system[J]. Journal of Combinatorial Chemistry,2004,6(5):699-702. [31] LIU X N,SHEN Y,YANG R T,et al. Inkjet printing assisted synthesis of multicomponent mesoporous metal oxides for ultrafast catalyst exploration[J]. Nano Letters,2012,12(11):5733-5739. [32] WANG N,ZHANG X M,CHEN B L,et al. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source[J]. Lab on a Chip,2012,12(20):3983. [33] BERGH S,GUAN S,HAGEMEYER A,et al. Gas phase oxidation of ethane to acetic acid using high-throughput screening in a massively parallel microfluidic reactor system[J]. Applied Catalysis A:General,2003,254(1):67-76. [34] GURAM A,HAGEMEYER A,LUGMAIR C G,et al. Application of high throughput screening to heterogeneous liquid and gas phase oxidation catalysis[J]. Advanced Synthesis & Catalysis,2004,346(23):215-230. [35] MCCLUSKEY P J,ZHAO C,KFIR O,et al. Precipitation and thermal fatigue in Ni-Ti-Zr shape memory alloy thin films by combinatorial nanocalorimetry[J]. Acta Materialia,2011,59(13):5116-5124. [36] KIM H J,HAN J H,KAISER R,et al. High-throughput analysis of thin-film stresses using arrays of micromachined cantilever beams[J]. Review of Scientific Instruments,2008,79:045112. [37] GREGOIRE J M,MCCLUSKEY P J,DALE D,et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses[J]. Scripta Materialia,2012,66(3-4):178-181. [38] YAN Z,ZHANG X K,LI G,et al. High-throughput combinatorial chemical bath deposition:The case of doping Cu (In,Ga) Se film with antimony[J]. Applied Surface Science,2018,427:1235-1241. [39] NIKOLIC V,WURSTER S,SAVAN A,et al. High-throughput study of binary thin film tungsten alloys[J]. International Journal of Refractory Metals and Hard Materials,2017,69:40-48. [40] MAO S S,ZHANG X J. High-throughput multi-plume pulsed-laser deposition for materials exploration and optimization[J]. Engineering,2015,1(3):367-371. [41] FAN H W,SHAN L L,MENG H,et al. High-throughput production of nanodisperse hybrid membranes on various substrates[J]. Journal of Membrane Science,2018,552:177-188. [42] WU H Y,LI J,LIU F,et al. A high-throughput methodology search for the optimum cooling rate in an advanced polycrystalline nickel base superalloy[J]. Materials & Design,2017,128:176-181. [43] GOLL D,LOEFFLER R,HOHS D,et al. Reaction sintering as a high-throughput approach for magnetic materials development[J]. Scripta Materialia,2018,146:355-361. [44] IVANOV R,DESCHAMPS A,DE GEUSER F. High throughput evaluation of the effect of Mg concentration on natural ageing of Al-Cu-Li-(Mg) alloys[J]. Scripta Materialia,2018,150:156-159. [45] CHIKYOW T,AHMET P,NAKAJIMA K,et al. A combinatorial approach in oxide/semiconductor interface research for future electronic devices[J]. Applied Surface Science,2002,189(3-4):284-291. [46] YAP C Y,CHUA C K,DONG Z L,et al. Review of selective laser melting:Materials and applications[J]. Applied Physics Reviews,2015,2(4):041101. [47] DU PLESSIS A,YADROITSEV I,YADROITSAVA I,et al. X-ray microcomputed tomography in additive manufacturing:a review of the current technology and applications[J]. 3D Printing and Additive Manufacturing,2018,5(3):227-247. [48] DEBROY T,MUKHERJEE T,MILEWSKI J O,et al. Scientific,technological and economic issues in metal printing and their solutions[J]. Nature Materials,2019,18(10):1026-1032. [49] MARTIN J H,YAHATA B D,HUNDLEY J M,et al. 3D printing of high-strength aluminium alloys[J]. Nature,2017,549(7672):365-369. [50] KAUFMANN N,IMRAN M,WISCHEROPP T M,et al. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM)[J]. Physics Procedia,2016,83:918-926. [51] TSAI P,FLORES K M. High-throughput discovery and characterization of multicomponent bulk metallic glass alloys[J]. Acta Materialia,2016,120:426-434. [52] DAO M,CHOLLACOOP N,VAN VLIET K J,et al. Computational modeling of the forward and reverse problems in instrumented sharp indentation[J]. Acta Materialia,2001,49(19):3899-3918. [53] CHEN S L,ZHANG X L,ZHAO J J,et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite[J]. Nature Communications,2018,9(1):4807. [54] ZHU Q F,PAN K,XIE S H,et al. Nanomechanics of multiferroic composite nanofibers via local excitation piezoresponse force microscopy[J]. Journal of the Mechanics and Physics of Solids,2019,126:76-86. [55] HECKMAN N M,IVANOFF T A,ROACH A M,et al. Automated high-throughput tensile testing reveals stochastic process parameter sensitivity[J]. Materials Science and Engineering A,2020,772:138632. [56] ISAACS E D,MARCUS M,AEPPLI G,et al. Synchrotron X-ray microbeam diagnostics of combinatorial synthesis[J]. Applied Physics Letters,1998,73(13):1820-1822. [57] OGUCHI H,HEILWEIL E J,JOSELL D,et al. Infrared emission imaging as a tool for characterization of hydrogen storage materials[J]. Journal of Alloys and Compounds,2009,477(1-2):8-15. [58] GIESSIBL F J. Advances in atomic force microscopy[J]. Reviews of Modern Physics,2003,75(3):949-983. [59] JIANG R,CHU D. A combinatorial approach toward electrochemical analysis[J]. Journal of Electroanalytical Chemistry,2002,527(1-2):137-142. [60] MARDARE A I,YADAV A P,WIECK A D,et al. Combinatorial electrochemistry on Al-Fe alloys[J]. Science and Technology of Advanced Materials,2008,9(3):035009. [61] HASSEL A W,LOHRENGEL M M. The scanning droplet cell and its application to structured nanometer oxide films on aluminium[J]. Electrochimica Acta,1997,42(20-22):3327-3333. [62] URQUHART A J,ANDERSON D G,TAYLOR M,et al. High throughput surface characterisation of a combinatorial material library[J]. Advanced Materials,2007,19(18):2486-2491. [63] ORIKASA Y,MAEDA T,KOYAMA Y,et al. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition[J]. Journal of the American Chemical Society,2013,135(15):5497-5500. [64] ZHOU Y N,YUE J L,HU E Y,et al. High-rate charging induced intermediate phases and structural changes of layer-structured cathode for lithium-ion batteries[J]. Advanced Energy Materials,2016,6(21):1600597. [65] LYU Y C,LIU Y L,CHENG T,et al. High-throughput characterization methods for lithium batteries[J]. Journal of Materiomics,2017,3(3):221-229. [66] MEIRER F,CABANA J,LIU Y J,et al. Three-dimensional imaging of chemical phase transformations at the nanoscale with full-field transmission X-ray microscopy[J]. Journal of Synchrotron Radiation,2011,18(5):773-781. [67] LI S Y,BEYERLEIN I J,ALEXANDER D J,et al. Texture evolution during multi-pass equal channel angular extrusion of copper:Neutron diffraction characterization and polycrystal modeling[J]. Acta Materialia,2005,53(7):2111-2125. [68] POUILLERIE C,SUARD E,DELMAS C. Structural characterization of Li1−z−xNi1+zO2 by neutron diffraction[J]. Journal of Solid State Chemistry,2001,158(2):187-197. [69] THIBAULT D,BOCHER P,THOMAS M,et al. Residual stress characterization in low transformation temperature 13%Cr-4%Ni stainless steel weld by neutron diffraction and the contour method[J]. Materials Science and Engineering A,2010,527(23):6205-6210. [70] WEI T,XIANG X D,WALLACE-FREEDMAN W G,et al. Scanning tip microwave near-field microscope[J]. Applied Physics Letters,1996,68(24):3506-3508. [71] GAO C,DUEWER F,XIANG X D. Quantitative microwave evanescent microscopy[J]. Applied Physics Letters,1999,75(19):3005-3007. [72] LEE D,SIM G D,XIAO K,et al. Scanning AC nanocalorimetry study of Zr/B reactive multilayers[J]. Journal of Applied Physics,2013,114(21):214902. [73] WEISS P A W,THOME C,MAIER W F. Ms-express:data-extracting and -processing software for high-throughput experimentation with mass spectrometry[J]. Journal of Combinatorial Chemistry,2004,6(4):520-529. [74] HOFFMANN C,SCHMIDT H W,SCHÜTH F. A multipurpose parallelized 49-channel reactor for the screening of catalysts:methane oxidation as the example reaction[J]. Journal of Catalysis,2001,198(2):348-354. [75] SOTTMANN J,HOMS-REGOJO R,WRAGG D S,et al. Versatile electrochemical cell for Li/Na-ion batteries and high-throughput setup for combined operando X-ray diffraction and absorption spectroscopy[J]. Journal of Applied Crystallography,2016,49(6):1972-1981. [76] ZHANG X K,XIANG Y. Combinatorial approaches for high-throughput characterization of mechanical properties[J]. Journal of Materiomics,2017,3(3):209-220. [77] SHAPIRO M J,GOUNARIDES J S. NMR methods utilized in combinatorial chemistry research[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,1999,35(2):153-200. [78] BLÜMICH B,CASANOVA F,APPELT S. NMR at low magnetic fields[J]. Chemical Physics Letters,2009,477(4-6):231-240. [79] JOHANN T,BRENNER A,SCHWICKARDI M,et al. Listening to catalysis-a real time parallel method for high throughput product analysis[J]. Catalysis Today,2003,81(3):449-455. [80] MEERSSCHAUT J,VANDERVORST W. High-throughput ion beam analysis at imec[J]. Nuclear Instruments and Methods in Physics Research Section B,2017,406:25-29. [81] SÁFRÁN G. "One-sample concept" micro-combinatory for high throughput TEM of binary films[J]. Ultramicroscopy,2018,187:50-55. [82] RUDNEVA M,KOZLOVA T,ZANDBERGEN H W. New possibilities for in-situ electrical characterization of nanosamples at different temperatures combined with simultaneous tem observations[J]. Microscopy and Microanalysis,2013,19(Suppl.2):456-457. [83] LEVINE L E,LARSON B C,YANG W,et al. X-ray microbeam measurements of individual dislocation cell elastic strains in deformed single-crystal copper[J]. Nature Materials,2006,5(8):619-622. [84] 张玉彬,范国华. 三维X射线衍射技术在金属材料研究中的应用[J]. 中国材料进展,2017,36(3):181-187,194. ZHANG Yubin,FAN Guohua. Three-dimensional X-ray diffraction technique for metals science[J]. Materials China,2017,36(3):181-187,194. [85] FRICK C P,LANG T W,SPARK K,et al. Stress-induced martensitic transformations and shape memory at nanometer scales[J]. Acta Materialia,2006,54(8):2223-2234. [86] HUTCHINSON J W. Plasticity at the micron scale[J]. International Journal of Solids and Structures,2000,37(1-2):225-238. [87] TYMIAK N I,KRAMER D E,BAHR D F,et al. Plastic strain and strain gradients at very small indentation depths[J]. Acta Materialia,2001,49(6):1021-1034. [88] TSAI P,FLORES K M. A combinatorial strategy for metallic glass design via laser deposition[J]. Intermetallics,2014,55:162-166. [89] TSAI P,FLORES K M. A laser deposition strategy for the efficient identification of glass-forming alloys[J]. Metallurgical and Materials Transactions A,2015,46(9):3876-3882. [90] SU H,YEUNG E S. High-throughput screening of heterogeneous catalysts by laser-induced fluorescence imaging[J]. Journal of the American Chemical Society,2000,122(30):7422-7423. [91] WU H,FAN G H,HUANG M,et al. Deformation behavior of brittle/ductile multilayered composites under interface constraint effect[J]. International Journal of Plasticity,2017,89:96-109. [92] HUXTABLE S,CAHILL D G,FAUCONNIER V,et al. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials[J]. Nature Materials,2004,3:5. [93] VLASSAK J J,NIX W D. A new bulge test technique for the determination of Young's modulus and Poisson's ratio of thin films[J]. Journal of Materials Research,1992,7(12):3242-3249. [94] 陈玉红,袁良经,王海舟. 球扁钢的激光剥蚀-电感耦合等离子体质谱原位统计分布分析研究[J]. 冶金分析,2009,29(9):1-5. CHEN Yuhong,YUAN Liangjing,WANG Haizhou. Investigation on original statistic distribution analysis of flat-bulb steel by laser ablation inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis,2009,29(9):1-5. [95] 罗倩华,李冬玲,马飞超,等. 不锈钢连铸板坯横截面夹杂物的原位统计分布分析[J]. 冶金分析,2013,33(12):1-7. LUO Qianhua,LI Dongling,MA Feichao,et al. Original position statistic distribution analysis for inclusion of cross-section of stainless steel continuous casting slab[J]. Metallurgical Analysis,2013,33(12):1-7. [96] 王海舟. 原位统计分布分析-材料研究及质量判据的新技术[J]. 中国科学(B辑化学),2002(6):481-485,577-578. WANG Haizhou. In situ statistical distribution analysis-new techniques for material research and quality criteria[J]. Science in China (Series B),2002(6):481-485,577-578. [97] 王海舟,贾云海,赵雷,等. 基于材料非均匀性高通量原位统计分布分析映射表征的材料基本单元组合实验技术[C]//中国金属学会,2014:2. WANG Haizhou,JIA Yunhai,ZHAO Lei,et al. The combinatorial experiment technique of materials' genetic units reflection mapping characterized by high throughput original position statistic distribution analysis based on the inhomogeneous property of materials[C]//The Chinese Society for Metals,2014:2. [98] GAO C,XIANG X D. Quantitative microwave near-field microscopy of dielectric properties[J]. Review of Scientific Instruments,1998,69(11):3846-3851. [99] VOGT S,CHU Y S,TKACHUK A,et al. Composition characterization of combinatorial materials by scanning X-ray fluorescence microscopy using microfocused synchrotron X-ray beam[J]. Applied Surface Science,2004,223(1-3):214-219. [100] LINKE S,KÜHN J,NÖRTHEMANN K,et al. Sensor high throughput screening using photocurrent measurements in silicon[J]. Procedia Engineering,2012,47:1195-1198. [101] BAO J G,BENAARBIA A,BAO S Y,et al. High temperature strain heterogeneities tracking within hole-specimens of FV566 turbine steel via digital image correlation[J]. Materials Science and Engineering A,2020,777:139068. [102] DING S Y,LIU Y H,LI Y L,et al. Combinatorial development of bulk metallic glasses[J]. Nature Materials,2014,13(5):494-500. [103] BAO H Y X,WU S C,WU Z K,et al. A machine-learning fatigue life prediction approach of additively manufactured metals[J]. Engineering Fracture Mechanics,2021,242:107508. [104] GREGOIRE J M,VAN CAMPEN D G,MILLER C E,et al. High-throughput synchrotron X-ray diffraction for combinatorial phase mapping[J]. Journal of Synchrotron Radiation,2014,21(6):1262-1268. [105] WU S C,YU X,ZUO R Z,et al. Porosity,element loss and strength model on softening behavior of hybrid laser arc welded Al-Zn-Mg-Cu alloy with synchrotron radiation analysis[J]. Welding Journal,2013,92(3):64-71. [106] WU S C,YU C,YU P S,et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed microtomography[J]. Materials Science & Engineering A,2016,651:604-614. [107] KOCKELMANN W,FREI G,LEHMANN E H,et al. Energy-selective neutron transmission imaging at a pulsed source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2007,578(2):421-434. [108] 张杰. 中国散裂中子源(CSNS)-多学科应用的大科学平台[J]. 中国科学院院刊,2006(5):415-417. ZHANG Jie. China Spallation Neutron Source (CSNS)-a large scientific platform for multidisciplinary applications[J]. Bulletin of Chinese Academy of Sciences,2006(5):415-417. [109] JUHÁS P,CHERBA D M,DUXBURY P M,et al. Ab initio determination of solid-state nanostructure[J]. Nature,2006,440(7084):655-658. [110] BRÉGER J,DUPRÉ N,CHUPAS P,et al. Short- and long-range order in the positiveelectrode material,Li(NiMn)0.5 O2:A Joint X-ray and neutron diffraction,pair distribution function analysis and NMR study[J]. Journal of the American Chemical Society,2005,127:7529-37. [111] WORACEK R,PENUMADU D,KARDJILOV N,et al. 3D mapping of crystallographic phase distribution using energy-selective neutron tomography[J]. Advanced Materials,2014,26(24):4069-4073. [112] SU Y H,OIKAWA K,SHINOHARA T,et al. Neutron Bragg-edge transmission imaging for microstructure and residual strain in induction hardened gears[J]. Scientific Reports,2021,11:4155. [113] PEDRO F C,GIOVANNI B,GASPAR G D. Neutron and synchrotron radiation diffraction study of the matrix residual stress evolution with plastic deformation in aluminum alloys and composites[J]. Materials Science and Engineering,2008,487:26-32. [114] REID A,MARSHALL M,KABRA S,et al. Application of neutron imaging to detect and quantify fatigue cracking[J]. International Journal of Mechanical Sciences,2019,159:182-194. [115] REEVES W H,SKRYABIN D V,BIANCALANA F,et al. Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres[J]. Nature,2003,424(6948):511-515. [116] TAKEUCHI I,YANG W,CHANG K S,et al. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in MgxZn1−xO composition spreads[J]. Journal of Applied Physics,2003,94:7336-7340. [117] KUBOTA H,TAKAHASHI R,KIM T W,et al. Combinatorial synthesis and luminescent characteristics of RECa4O(BO3)3 epitaxial thin films[J]. Applied Surface Science,2004,223:241-244. [118] 赵雷,陈学斌,冯光,等. 多元合金组合材料的微波高通量微制造与表征的新方法研究[C]//第十一届中国钢铁年会. 中国北京:2017:1. ZHAO Lei,CHEN Xuebin,FENG Guang,et al. A new approach to high throughput micro synthesis and characterization of multi-element alloy combinatorial materials by microwave heating[C]//The 11th China Iron and Steel Annual Conference. Beijing,China:2017:1. [119] FLEET E,CHATRAPHORN S,WELLSTOOD F,et al. Closed-cycle refrigerator-cooled scanning SQUID microscope for room-temperature samples[J]. Review of Scientific Instruments,2001,72:3281-3290. [120] SILVA T,SCHULTZ S. A scanning near-field optical microscope for the imaging of magnetic domains in reflection[J]. Review of Scientific Instruments,1996,67:715-725. [121] ORAL A. Scanning hall probe microscopy of superconductors and magnetic materials[J]. Journal of Vacuum Science & Technology B:Microelectronics and Nanometer Structures,1996,14(2):1202. [122] BURNETT T L,WITHERS P J. Completing the picture through correlative characterization[J]. Nature Materials,2019,18(10):1041-1049. [123] BURNETT T L,MCDONALD S A,GHOLINIA A,et al. Correlative tomography[J]. Scientific Reports,2015,4(1):4711. [124] SHU X K,LEV-RAM V,DEERINCK T J,et al. A genetically encoded tag for correlated light and electron microscopy of intact cells,tissues,and organisms[J]. PLoS Biology,2011,9(4):e1001041. [125] DE BOER P,HOOGENBOOM J P,GIEPMANS B N G. Correlated light and electron microscopy:ultrastructure lights up![J]. Nature Methods,2015,12(6):503-513. [126] 江树勇,张艳秋. 晶界与晶体塑性[M]. 北京:机械工业出版社,2015. JIANG Shuyong,ZHANG Yanqiu. Grain boundaries and crystalline plasticity[M]. Beijing:China Machine Press,2015. [127] 陈建桥. 材料强度学[M]. 武汉:华中科技大学出版社,2008. CHEN Jianqiao. Strength of materials[M]. Wuhan:Huazhong University of Science and Technology Press,2008. [128] BURNETT T L,GEURTS R,JAZAERI H,et al. Multiscale 3D analysis of creep cavities in AISI type 316 stainless steel[J]. Materials Science and Technology,2015,31(5):522-534. [129] SLATER T J A,BRADLEY R S,BERTALI G,et al. Multiscale correlative tomography:an investigation of creep cavitation in 316 stainless steel[J]. Scientific Reports,2017,7(1):7332. [130] JIN Y J,LU H,YU C,et al. Study on grain boundary character and strain distribution of intergranular cracking in the CGHAZ of T23 steel[J]. Materials Characterization,2013,84:216-224. [131] LENG Z,FIELD D P. Damage susceptibility of grain boundaries in HT9 steel subjected to high-temperature creep[J]. Metallurgical and Materials Transactions A,2012,43(10):3539-3546. [132] 王龙,冯国林,李志强,等. X射线断层扫描在材料力学行为研究中的应用[J]. 强度与环境,2017,44(6):43-56. WANG Long,FENG Guolin,LI Zhiqiang,et al. Applications of X-ray computed tomography to study the mechanical behaviors of materials[J]. Structure & Environment Engineering,2017,44(6):43-56. [133] PYZALLA A,CAMIN B,BUSLAPS T,et al. Simultaneous tomography and diffraction analysis of creep damage[J]. Science,2005,308(5718):92-95. [134] KAIRA C S,STANNARD T J,DE ANDRADE V,et al. Exploring novel deformation mechanisms in aluminum-copper alloys using in situ 4D nanomechanical testing[J]. Acta Materialia,2019,176:242-249. [135] KIM Y,ZHU J,YEOM B,et al. Stretchable nanoparticle conductors with self-organized conductive pathways[J]. Nature,2013,500(7460):59-63. [136] HUO H H,SHEN X D,WANG C Y,et al. Asymmetric photoredox transition-metal catalysis activated by visible light[J]. Nature,2014,515(7525):100-103. [137] CUI Y J,NIZIOLEK P J,MACDONALD B T,et al. Lrp5 functions in bone to regulate bone mass[J]. Nature Medicine,2011,17(6):684-691. [138] HU Y N,WU S C,SONG Z,et al. Effect of microstructural features on the failure behavior of hybrid laser welded AA7020[J]. Fatigue & Fracture of Engineering Materials & Structures,2018,41(9):2010-2023. [139] 胡雅楠,吴圣川,宋哲,等. 激光复合焊接7020铝合金的疲劳性能及损伤行为[J]. 中国激光,2018,45(3):198-207. HU Yanan,WU Shengchuan,SONG Zhe,et al. Fatigue property and fracture behavior of 7020 aluminum alloys welded by laser-MIG hybrid welding[J]. Chinese Journal of Lasers,2018,45(3):198-207. [140] HAMAM R,HILD F,ROUX S. Stress intensity factor gauging by digital image correlation:application in cyclic fatigue[J]. Strain,2007,43(3):181-192. [141] YONEYAMA S,OGAWA T,KOBAYASHI Y. Evaluating mixed-mode stress intensity factors from full-field displacement fields obtained by optical methods[J]. Engineering Fracture Mechanics,2007,74(9):1399-1412. [142] ABANTO-BUENO J,LAMBROS J. Investigation of crack growth in functionally graded materials using digital image correlation[J]. Engineering Fracture Mechanics,2002,69(14):1695-1711. [143] RETHORE J,GRAVOUIL A,MORESTIN F,et al. Estimation of mixed-mode stress intensity factors using digital image correlation and an interaction integral[J]. International Journal of Fracture,2005,132(1):65-79. [144] HUNTLEY J M,FIELD J E. Measurement of crack tip displacement field using laser speckle photography[J]. Engineering Fracture Mechanics,1988,30(6):779-790. [145] PARKS D M. A stiffness derivative finite element technique for determination of crack tip stress intensity factors[J]. International Journal of Fracture,1974,10(4):487-502. [146] RÉTHORÉ J,ROUX S,HILD F. Noise-robust stress intensity factor determination from kinematic field measurements[J]. Engineering Fracture Mechanics,2008,75(13):3763-3781. [147] ROUX S,HILD F,VIOT P,et al. Three-dimensional image correlation from X-ray computed tomography of solid foam[J]. Composites Part A:Applied Science and Manufacturing,2008,39(8):1253-1265. [148] BAY B K,SMITH T S,FYHRIE D P,et al. Digital volume correlation:Three-dimensional strain mapping using X-ray tomography[J]. Experimental Mechanics,1999,39(3):217-226. [149] VERHULP E,RIETBERGEN B V,HUISKES R. A three-dimensional digital image correlation technique for strain measurements in microstructures[J]. Journal of Biomechanics,2004,37(9):1313-1320. [150] TODA H,SINCLAIR I,BUFFIÈRE J Y,et al. Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography[J]. Philosophical Magazine,2003,83(21):2429-2448. [151] NIELSEN S F,POULSEN H F,BECKMANN F,et al. Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography[J]. Acta Materialia,2003,51(8):2407-2415. [152] HALDRUP K,NIELSEN S F,WERT J A. A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers[J]. Experimental Mechanics,2008,48(2):199-211. [153] KOBAYASHI M,TODA H,KAWAI Y,et al. High-density three-dimensional mapping of internal strain by tracking microstructural features[J]. Acta Materialia,2008,56(10):2167-2181. [154] LIMODIN N,RÉTHORÉ J,BUFFIÈRE J Y,et al. Crack closure and stress intensity factor measurements in nodular graphite cast iron using three-dimensional correlation of laboratory X-ray microtomography images[J]. Acta Materialia,2009,57(14):4090-4101. [155] 中国科学院. 中国学科发展战略·新型飞行器中的关键力学问题[M]. 北京:科学出版社,2018. Chinese Academy of Sciences. Chinese discipline development strategy key mechanics issues in new aircraft[M]. Beijing:Science Press,2018. [156] SUÉRY M,TERZI S,MIREUX B,et al. Fast in situ X-ray microtomography observations of solidification and semisolid deformation of Al-Cu alloys[J]. JOM,2012,64(1):83-88. [157] DEZECOT S,BUFFIERE J Y,KOSTER A,et al. In situ 3D characterization of high temperature fatigue damage mechanisms in a cast aluminum alloy using synchrotron X-ray tomography[J]. Scripta Materialia,2016,113:254-258. [158] BALE H A,HABOUB A,MACDOWELL A A,et al. Real-time quantitative imaging of failure events in materials under load at temperatures above 1600℃[J]. Nature Materials,2013,12(1):40-46. [159] HABOUB A,BALE H A,NASIATKA J R,et al. Tensile testing of materials at high temperatures above 1700℃ with in situ synchrotron X-ray micro-tomography[J]. Review of Scientific Instruments,2014,85(8):083702. [160] BARNARD H S,MACDOWELL A A,PARKINSON D Y,et al. Synchrotron X-ray micro-tomography at the Advanced Light Source:Developments in high-temperature in-situ mechanical testing[J]. Journal of Physics:Conference Series,2017,849:012043. [161] MAZARS V,CATY O,COUÉGNAT G,et al. Damage investigation and modeling of 3D woven ceramic matrix composites from X-ray tomography in-situ tensile tests[J]. Acta Materialia,2017,140:130-139. [162] CHAPMAN T P,KAREH K M,KNOP M,et al. Characterisation of short fatigue cracks in titanium alloy IMI 834 using X-ray microtomography[J]. Acta Materialia,2015,99:49-62. [163] SLOOF W G,PEI R,MCDONALD S A,et al. Repeated crack healing in MAX-phase ceramics revealed by 4D in situ synchrotron X-ray tomographic microscopy[J]. Scientific Reports,2016,6(1):23040. [164] PUNCREOBUTR C,LEE P D,HAMILTON R W,et al. Quantitative 3D characterization of solidification structure and defect evolution in Al alloys[J]. JOM,2012,64(1):89-95. [165] 吴圣川,张思齐. 可用同步辐射光源进行原位成像的疲劳试验机及试验方法:中国,105334237A[P]. 2016-02-17. WU Shengchuan,ZHANG Siqi. In situ fatigue testing machine and experimental method used for synchrotron radiation X-ray microtomography:China,105334237A[P]. 2016-02-17. [166] 吴圣川,张思齐,宋哲. 改进的同步辐射光源原位成像的疲劳试验机作动机构:中国,205879710U[P]. 2017-01-11. WU Shengchuan,ZHANG Siqi,SONG Zhe. Improved In situ fatigue testing machine and actuating mechanism used for synchrotron radiation X-ray microtomography:China,205879710U[P]. 2017-01-11. [167] 吴圣川,宋哲,张思齐. 含温控机构的同步辐射原位成像疲劳试验机及其试验方法:中国,106680121B[P]. 2019-08-20. WU Shengchuan,SONG Zhe,ZHANG Siqi. In situ fatigue testing machine eppuiped with the temperature control mechanism used for synchrotron radiation X-ray microtomography:China,106680121B[P]. 2019-08-20. [168] 吴圣川,吴正凯,鲍泓翊玺,等. 基于先进光源原位成像的超高周疲劳损伤试验系统:中国,110161048B[P]. 2020-06-19. WU Shengchuan,WU Zhengkai,BAO Hongyixi,et al. In situ super high cycle fatigue testing machine based on the advanced light source:China,110161048B[P]. 2020-06-19. [169] 吴圣川,胡雅楠,康国政. 材料疲劳损伤行为的先进光源表征技术[M]. 北京:科学出版社,2018. WU Shengchuan,HU Yanan,KANG Guozheng. Characterization of material fatigue damage via advanced light source tomography[M]. Beijing:Science Press,2018. [170] BAO J G,WU S C,WITHERS P J,et al. Defect evolution during high temperature tension-tension fatigue of SLM AlSi10Mg alloy by synchrotron tomography[J]. Materials Science and Engineering A,2020,792:139809. [171] PARAB N D,ROBERTS Z A,HARR M H,et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression[J]. Applied Physics Letters,2016,109(13):131903. [172] HUDSPETH M,CLAUS B,DUBELMAN S,et al. High speed synchrotron X-ray phase contrast imaging of dynamic material response to split Hopkinson bar loading[J]. Review of Scientific Instruments,2013,84(2):025102. [173] 虞雨框,吴正凯,吴圣川. 高分辨三维成像原位试验机研制进展及应用[J]. 中国材料进展,2021,40(2):1140-1154. YU Yukuang,WU Zhengkai,WU Shengchuan. Development and application of in-situ testing machines based on high resolution three-dimensional tomography[J]. Materials China,2021,40(2):1140-1154. [174] 吴圣川,吴正凯,胡雅楠,等. 增材材料高通量试样制备方法、表征平台和表征实验方法:中国,108982181B[P]. 2020-03-20. WU Shengchuan,WU Zhengkai,HU Yanan,et al. High throughput sample fabrication,characterization platform and method of additively manufactured materials:China,108982181B[P]. 2020-03-20. [175] 高治峰,董丽虹,王海斗,等. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报,2020,34(9):9158-9163. GAO Yefeng,DONG Lihong,WANG Haidou,et al. Research progress and prospect of vibrothermography in different defect types[J]. Materials Review,2020,34(9):9158-9163. [176] DAHDAH N,LIMODIN N,EL BARTALI A,et al. Damage investigation in A319 aluminium alloy by X-ray tomography and digital volume correlation during in situ high-temperature fatigue tests[J]. Strain,2016,52(4):324-335. [177] ODDERSHEDE J,CAMIN B,SCHMIDT S,et al. Measuring the stress field around an evolving crack in tensile deformed Mg AZ31 using three-dimensional X-ray diffraction[J]. Acta Materialia,2012,60(8):3570-3580. [178] HOFMANN A,RIVKIN L. Four generation storage ring sources[J]. Synchrotron Radiation News,1999,12(6):6-15. [179] ALEXANDRE P,EL FEKIH R B,LETRESOR A,et al. Transparent top-up injection into a fourth-generation storage ring[J]. Nuclear Instruments and Methods in Physics Research A,2021,986:164739. [180] BORLAND M,DECKER G,EMERY L,et al. Lattice design challenges for fourth-generation storage-ring light sources[J]. Journal of Synchrotron Radiation,2014,21:912-936. [181] BORLAND M,SUN Y P,HUANG X B. Comprehensive comparison of two tracking codes for single-particle dynamics evaluation of a next-generation storage ring light source[J]. Physical Review Accelerators and Beams,2019,22:114601. [182] 孙中体,李珍珠,程观剑,等. 机器学习在材料设计方面的研究进展[J]. 科学通报,2019,64(32):3270-3275. SUN Zhongti,LI Zhenzhu,CHENG Guanjian,et al. Research progress and perspective of machine learning in material design[J]. Chinese Science Bulletin,2019,64(32):3270-3275. [183] 康靓,米晓希,王海莲,等. 人工神经网络在材料科学中的研究进展[J]. 材料导报,2020,34(21):21172-21179. KANG Liang,MI Xiaoxi,WANG Hailian,et al. Research progress of artificial neural network in materials science[J]. Materials Review,2020,34(21):21172-21179. [184] PEI Z G,YIN J Q,HAWK J A,et al. Machine-learning informed prediction of high-entropy solid solution formation:Beyond the Hume-Rothery rules[J]. npj Computational Materials,2020,6(1):50. [185] CHEN G,WANG H Y,BEZOLD A,et al. Strengths prediction of particulate reinforced metal matrix composites (PRMMCs) using direct method and artificial neural network[J]. Composite Structures,2019,223(1):14. [186] XU Q C,LI Z Z,LIU M,et al. Rationalizing perovskite data for machine learning and materials design[J]. The Journal of Physical Chemistry Letters,2018,9(24):6948-6954. [187] SEKO A,MAEKAWA T,TSUDA K,et al. Machine learning with systematic density-functional theory calculations:Application to melting temperatures of single- and binary-component solids[J]. Physical Review B,2014,89(5):054303. [188] 亓欣波,李长鹏,李阳,等. 基于机器学习的电子束选区熔化成形件密度预测[J]. 机械工程学报,2019,55(15):48-55. QI Xinbo,LI Changpeng,LI Yang,et al. Machine learning algorithms on density prediction of electron beam selective melted parts[J]. Journal of Mechanical Engineering,2019,55(15):48-55 [189] RAMACHANDRA S,DURODOLA J F,FELLOWS N A,et al. Experimental validation of an ANN model for random loading fatigue analysis[J]. International Journal of Fatigue,2019,126:112-121. [190] KOSTIUCHENKO T,KÖRMANN F,NEUGEBAUER J,et al. Impact of lattice relaxations on phase transitions in a high-entropy alloy studied by machine-learning potentials[J]. npj Computational Materials,2019,5(1):55. [191] CHAN H,CHERUKARA M,LOEFFLER T D,et al. Machine learning enabled autonomous microstructural characterization in 3D samples[J]. npj Computational Materials,2020,6(1):1. [192] ORME A D,CHELLADURAI I,RAMPTON T M,et al. Insights into twinning in Mg AZ31:A combined EBSD and machine learning study[J]. Computational Materials Science,2016,124:353-363. [193] PILANIA G,WANG C C,JIANG X,et al. Accelerating materials property predictions using machine learning[J]. Scientific Reports,2013,3(1):2810. [194] WEN C,ZHANG Y,WANG C X,et al. Machine learning assisted design of high entropy alloys with desired property[J]. Acta Materialia,2019,170:109-117. [195] YAN K Z,XU H B,SHEN G H,et al. Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine[J]. Advances in Materials Science and Engineering,2013(2):1-13. [196] 裴洪,胡昌华,司小胜,等. 基于机器学习的设备剩余寿命预测方法综述[J]. 机械工程学报,2019,55(8):1-13. PEI Hong,HU Changhua,SI Xiaosheng,et al. Review of machine learning based remaining useful life prediction methods for equipment[J]. Journal of Mechanical Engineering,2019,55(8):1-13. [197] GOBERT C,REUTZEL E W,PETRICH J,et al. Application of supervised machine learning for defect detection during metallic powder bed fusion additive manufacturing using high resolution imaging[J]. Additive Manufacturing,2018,21:517-528. [198] LU S H,ZHOU Q H,OUYANG Y,et al. Accelerated discovery of stable lead-free hybrid organic-inorganic perovskites via machine learning[J]. Nature Communications,2018,9(1):3405. [199] BOTU V,BATRA R,CHAPMAN J,et al. Machine learning force fields:Construction,validation,and outlook[J]. The Journal of Physical Chemistry C,2017,121(1):511-522. [200] ZHOU Z Q,ZHOU Y J,HE Q F,et al. Machine learning guided appraisal and exploration of phase design for high entropy alloys[J]. npj Computational Materials,2019,5(1):128. [201] 王炯,肖斌,刘轶. 机器学习辅助的高通量实验加速硬质高熵合金CoxCryTizMouWv成分设计[J]. 中国材料进展,2020,39(4):269-277. WANG Jiong,XIAO Bin,LIU Yi. Machine learning assisted high-throughput experiments accelerates the composition design of hard high-entropy alloy CoxCryTizMouWv[J]. Materials China,2020,39(4):269-277. |
[1] | 方续东, 邓武彬, 吴祖堂, 李进, 吴晨, 前田龙太郎, 田边, 赵立波, 林启敬, 张仲恺, 韩香广, 蒋庄德. 基于惯性传感器的呼吸测量技术综述[J]. 机械工程学报, 2024, 60(20): 1-23. |
[2] | 傅杨, 张跃, 毛颖, 唐小华, 陈祖高, 徐和武, 杨雨沛, 高斌, 田贵云. 基于Feature Boosting的管道电磁内检测多传感信号缺陷解析算法[J]. 机械工程学报, 2024, 60(20): 51-67. |
[3] | 吴洁, 沈以赴, 黄国强. 2024铝合金填丝TIG焊接头搅拌摩擦加工组织和性能研究[J]. 机械工程学报, 2024, 60(20): 153-161. |
[4] | 张志勇, 王宇翔, 黄彩霞, 吴悠, 杜荣华. 融合灰色预测和卡尔曼滤波的车辆侧向碰撞预警[J]. 机械工程学报, 2024, 60(20): 240-250. |
[5] | 廖贵文, 张毅, 魏凯, 刘小君, 王伟. 受限润滑界面液固二相流场结构与颗粒运动行为耦合特性分析[J]. 机械工程学报, 2024, 60(20): 351-360. |
[6] | 王旭, 姜兴宇, 杨国哲, 孙猛, 于沈弘, 毕凯航, 赵日铮, 刘伟军. 基于PSO-SSA的激光清洗装备人机界面布局优化研究[J]. 机械工程学报, 2024, 60(20): 372-387. |
[7] | 王德祥, 张宇, 江京亮, 刘新福, 刘国梁. 离子液基和棕榈油基纳米流体在镍基高温合金微量润滑磨削界面的摩擦学机理研究[J]. 机械工程学报, 2024, 60(19): 159-171. |
[8] | 李浦, 逯代兴. 协同仿真算法研究综述[J]. 机械工程学报, 2024, 60(19): 172-186. |
[9] | 王晓宇, 魏兆成, 王学勤, 王栋. 整体叶轮双列开槽五轴插铣加工的残留材料建模[J]. 机械工程学报, 2024, 60(19): 310-317. |
[10] | 王高见, 刘丽, 康丹丹, 叶延洪, 邓德安. Ni含量对高速列车转向架耐候钢焊缝金属微观组织、力学性能及腐蚀行为的影响[J]. 机械工程学报, 2024, 60(18): 163-172. |
[11] | 张明康, 师文庆, 徐梅珍, 王迪, 陈杰. 隐式曲面多孔结构压缩性能与流体压降性能研究[J]. 机械工程学报, 2024, 60(18): 394-406. |
[12] | 马伟佳, 朱小龙, 刘青瑶, 段星光, 李长胜. 人工智能在机器人辅助手术中的应用[J]. 机械工程学报, 2024, 60(17): 22-39. |
[13] | 袁小庆, 吴涛, 原勋, 王文东. 基于GSO-RF意图识别算法的全身助力外骨骼控制方法研究[J]. 机械工程学报, 2024, 60(17): 91-101. |
[14] | 张禹泽, 赵竞夫, 赵振伟, 康荣杰, 戴建生, 宋智斌. 面向多关节训练的并联柔索驱动下肢康复机器人设计与分析[J]. 机械工程学报, 2024, 60(17): 111-122. |
[15] | 梁旭, 张建勇, 李国涛, 苏婷婷, 何广平, 侯增广. 面向骨折复位手术的冗余并联机构:设计、建模与性能分析[J]. 机械工程学报, 2024, 60(17): 133-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||