机械工程学报 ›› 2021, Vol. 57 ›› Issue (11): 2-32.doi: 10.3901/JME.2021.11.002
• 特邀专栏:生物组织精准手术器械设计制造 • 上一篇 下一篇
王成勇1,2, 陈志桦1,2, 陈华伟3, 宋清华4, 任莹晖5, 隋建波1,2, 舒利明6, 陈滨7, 郑李娟1,2
收稿日期:
2020-12-30
修回日期:
2021-03-26
出版日期:
2021-06-05
发布日期:
2021-07-23
通讯作者:
王成勇(通信作者),男,1964年出生,博士,教授,博士研究生导师。主要研究方向为高速高效精密超精密加工理论、工艺、刀具与装备技术,生物组织切除理论与医疗器械设计和制造。E-mail:cywang@gdut.edu.cn
作者简介:
陈华伟,男,1975年出生,博士,教授,博士研究生导师。主要研究方向为微纳仿生表面制造、界面微流体行为理论。E-mail:chenhw75@buaa.edu.cn
基金资助:
WANG Chengyong1,2, CHEN Zhihua1,2, CHEN Huawei3, SONG Qinghua4, REN Yinghui5, SUI Jianbo1,2, SHU Liming6, CHEN Bin7, ZHENG Lijuan1,2
Received:
2020-12-30
Revised:
2021-03-26
Online:
2021-06-05
Published:
2021-07-23
摘要: 生物骨材料是一种结构复杂的各向异性材料,其切削加工是外科手术中一项基础而关键的操作。骨材料的加工质量直接影响手术治疗效果、人工假体植入稳定性、以及术后康复时间。人体不同部位的骨材料的力学性能存在一定差异,手术器械种类繁多且操作不同,使骨材料的加工方式呈现多样化。在外科手术中,各类器械需要对骨材料进行高精度、高效率、低损伤的加工,其加工机理研究对提高手术器械的使用性能,手术治疗效果和康复效果具有重大意义。因此,从生物骨材料的基础力学与断裂力学等特性出发,阐述了包括钻、铣、磨、锯等机械加工方式以及超声、激光、和水射流等特种能场加工方式对骨材料的切除机理,分析了不同机械加工方式下的切削力与切削温度理论模型,特种能场的切除机理与加工特性,指出骨材料加工的发展现状以及目前存在的一些问题,提出了骨材料加工的主要研究重点。
中图分类号:
王成勇, 陈志桦, 陈华伟, 宋清华, 任莹晖, 隋建波, 舒利明, 陈滨, 郑李娟. 生物骨材料切除理论研究综述[J]. 机械工程学报, 2021, 57(11): 2-32.
WANG Chengyong, CHEN Zhihua, CHEN Huawei, SONG Qinghua, REN Yinghui, SUI Jianbo, SHU Liming, CHEN Bin, ZHENG Lijuan. A Review on Cutting Mechanism for Bone Material[J]. Journal of Mechanical Engineering, 2021, 57(11): 2-32.
[1] BECHTOL C O,FERGUNSON A B,LAING P G. Metals and engineering in bone and joint surgery[M]. Michigan:Williams & Wilkins,1959. [2] SNEATH R. The determination of optimum twist drill shape for bone[M]. Glasgow:Elsevier,1965. [3] JACOBS C,POPE M,BERRY J,et al. A study of the bone machining process-orthogonal cutting[J]. Journal of Biomechanics,1974,7(2):131-136. [4] MITSUISHI M,CAO J,BáRTOLO P,et al. Biomanufacturing[J]. CIRP Annals,2013,62(2):585-606. [5] 李茂华,于国平,周勇. 实用骨科学[M]. 吉林:吉林科学技术出版社,2014. LI Maohua,YU Guoping,ZHOU Yong. Practice of orthopaedics[M]. Jilin:Jilin Science and Technology Press,2014. [6] 郭守进. 现代临床骨科学[M]. 上海:上海交通大学出版社,2018.GUO Shoujin. Clinical orthpaedics[M]. Shanghai:Shanghai Jiao Tong University Press,2018. [7] RAUCH F,TRAVERS R,GLORIEUX F H. Intracortical remodeling during human bone development-A histomorphometric study[J]. Bone,2007,40(2):274-280. [8] RITCHIE R O,BUEHLER M J,HANSMA P. Plasticity and toughness in bone[J]. Physics Today,2009,62(6):41-47. [9] SALGUERO L,SAADAT F,SEVOSTIANOV I. Micromechanical modeling of elastic properties of cortical bone accounting for anisotropy of dense tissue[J]. Journal of Biomechanics,2014,47(13):3279-3287. [10] ZIMMERMANN E A,RITCHIE R O. Bone as a structural material[J]. Advanced Healthcare Materials,2015,4(9):1287-1304. [11] LAUNEY M E,BUEHLER M J,RITCHIE R O. On the mechanistic origins of toughness in bone[J]. Annual Review of Materials Research,2010,40:25-53. [12] ZIMMERMANN E A,SCHAIBLE E,BALE H,et al. Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales[J]. Proceedings of the National Academy of Sciences,2011,108(35):14416-14421. [13] ZIMMERMANN E A,LAUNEY M E,BARTH H D,et al. Mixed-mode fracture of human cortical bone[J]. Biomaterials,2009,30(29):5877-5884. [14] RITCHIE R O,KINNEY J H,KRUZIC J J,et al. A fracture mechanics and mechanistic approach to the failure of cortical bone[J]. Fatigue Fracture of Engineering Materials Structures,2005,28(4):345-371. [15] NALLA R K,KRUZIC J J,KINNEY J H,et al. Effect of aging on the toughness of human cortical bone:Evaluation by R-curves[J]. Bone,2004,35(6):1240-1246. [16] NALLA R K,KINNEY J H,RITCHIE R O. Mechanistic fracture criteria for the failure of human cortical bone[J]. Nature materials,2003,2(3):164-168. [17] YENI Y N,NORMAN T. Calculation of porosity and osteonal cement line effects on the effective fracture toughness of cortical bone in longitudinal crack growth[J]. Journal of Biomedical Materials Research,2000,51(3):504-509. [18] BAI W,SHU L,SUN R,et al. Mechanism of material removal in orthogonal cutting of cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials,2020,104:103618. [19] LIAO Z,AXINTE D A. On chip formation mechanism in orthogonal cutting of bone[J]. International Journal of Machine Tools Manufacture,2016,102:41-55. [20] ZIMMERMANN E A,LAUNEY M E,RITCHIE R O. The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone[J]. Biomaterials,2010,31(20):5297-5305. [21] KAWASEGI N,SUGIMORI H,MORIMOTO H,et al. Development of cutting tools with microscale and nanoscale textures to improve frictional behavior[J]. Precision Engineering,2009,33(3):248-254. [22] ORRA K,CHOUDHURY S K. Tribological aspects of various geometrically shaped micro-textures on cutting insert to improve tool life in hard turning process[J]. Journal of Manufacturing Processes,2018,31:502-513. [23] LIAN Y,CHEN H,MU C. Performance of microtextured tools fabricated by inductively coupled plasma etching in dry cutting tests on medium carbon steel workpieces[J]. International Journal of Precision Engineering Manufacturing-Green Technology,2019,6(2):175-188. [24] HILLERY M T,SHUAIB I. Temperature effects in the drilling of human and bovine bone[J]. Journal of Materials Processing Technology,1999,92:302-308. [25] ZHANG L,TAI B L,WANG A C,et al. Mist cooling in neurosurgical bone grinding[J]. CIRP Annals,2013,62(1):367-370. [26] ENOMOTO T,SHIGETA H,SUGIHARA T,et al. A new surgical grinding wheel for suppressing grinding heat generation in bone resection[J]. CIRP Annals,2014,63(1):305-308. [27] SEDLIN E D. A rheologic model for cortical bone:a study of the physical properties of human femoral samples[J]. Acta Orthopaedica Scandinavica,1965,36(sup83):1-77. [28] BONFIELD W. Advances in the fracture mechanics of cortical bone[J]. Journal of Biomechanics,1987,20(11-12):1071-1081. [29] ZHANG P,CHEN H,ZHANG L,et al. Anti-adhesion effects of liquid-infused textured surfaces on high-temperature stainless steel for soft tissue[J]. Applied Surface Science,2016,385:249-256. [30] LIU G,ZHANG P,LIU Y,et al. Self-lubricantingslippery surface with wettability gradients for anti-sticking of electrosurgical scalpel[J]. Micromachines,2018, 9(11):591. [31] HAN Z,FU J,FENG X,et al. Bionic anti-adhesive electrode coupled with maize leaf microstructures and TiO2 coating[J]. RSC Advances,2017,7(72):45287-45293. [32] YAO G,ZHANG D,GENG D,et al. Improving anti-adhesion performance of electrosurgical electrode assisted with ultrasonic vibration[J]. Ultrasonics,2018,84:126-133. [33] WIGGINS K,MALKIN S. Orthogonal machining of bone[J]. Journal of Biomechanical Engineering,1978,100(3):122-130. [34] KRAUSE W. Orthogonal bone cutting:Saw design and operating characteristics[J]. Journal of Biomechanical Engineering,1987,109(3):263-271. [35] PLASKOS C,HODGSON A J,CINQUIN P. Modelling and optimization of bone-cutting forces in orthopaedic surgery[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention,2003. Canada. Berlin,Heidelberg,Springer:254-261. [36] FENG Z,RHO J,HAN S,et al. Orientation and loading condition dependence of fracture toughness in cortical bone[J]. Materials Science Engineering:C,2000,11(1):41-46. [37] SUGITA N,MITSUISHI M. Specifications for machining the bovine cortical bone in relation to its microstructure[J]. Journal of Biomechanics,2009,42(16):2826-2829. [38] SUGITA N,OSA T,AOKI R,et al. A new cutting method for bone based on its crack propagation characteristics[J]. CIRP Annals,2009,58(1):113-118. [39] FELDMANN A,GANSER P,NOLTE L,et al. Orthogonal cutting of cortical bone:Temperature elevation and fracture toughness[J]. International Journal of Machine Tools Manufacture,2017,118:1-11. [40] YEAGER C,NAZARI A,AROLA D. Machining of cortical bone:surface texture,surface integrity and cutting forces[J]. Machining Science Technology,2008,12(1):100-118. [41] SUI J,SUGITA N,ISHII K,et al. Force analysis of orthogonal cutting of bovine cortical bone[J]. Machining Science Technology,2013,17(4):637-649. [42] HUIYU H,CHENGYONG W,YUE Z,et al. Investigating bone chip formation in craniotomy[J]. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2017,231(10):959-974. [43] MALAK S F,ANDERSON I A. Orthogonal cutting of cancellous bone with application to the harvesting of bone autograft[J]. Medical Engineering & Physics,2008,30(6):717-724. [44] PANDEY R K,TRAUMA. Drilling of bone:A comprehensive review[J]. Journal of Clinical Orthopaedics,2013,4(1):15-30. [45] CSEKE A,HEINEMANN R. The effects of cutting parameters on cutting forces and heat generation when drilling animal bone and biomechanical test materials[J]. Medical Engineering & Physics,2018,51:24-30. [46] LIAO Z,AXINTE D A. On monitoring chip formation,penetration depth and cutting malfunctions in bone micro-drilling via acoustic emission[J]. Journal of Materials Processing Technology,2016,229:82-93. [47] SHU L,LI S,TERASHIMA M,et al. A novel self-centring drill bit design for low-trauma bone drilling[J]. International Journal of Machine Tools Manufacture,2020:103568. [48] ALAM K,MUHAMMAD R,SHAMSUZZOHA A,et al. Quantitative analysis of force and torque in bone drilling[J]. The Journal of Engineering Research,2017,14(1):39-48. [49] SORIANO J,IRIARTE L,EGUREN J,et al. Effects of rotational speed and feed rate on temperature rise,feed force and cutting torque when drilling bovine cortical bone[C]//AIP conference proceedings,2012. Cadiz. American Institute of Physics:408-416. [50] XU L,WANG C,JIANG M,et al. Drilling force and temperature of bone under dry and physiological drilling conditions[J]. Chinese journal of mechanical engineering,2014,27(6):1240-1248. [51] ZHANG Y,XU L L,WANG C Y,et al. Mechanical and thermal damage in cortical bone drilling in vivo[J]. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2019,233(6):621-635. [52] TSAI M-D,HSIEH M-S,TSAI C-H. Bone drilling haptic interaction for orthopedic surgical simulator[J]. Computers in Biology Medicine,2007,37(12):1709-1718. [53] LEE J,GOZEN B A,OZDOGANLAR O B. Modeling and experimentation of bone drilling forces[J]. Journal of Biomechanics,2012,45(6):1076-1083. [54] SUI J,SUGITA N,ISHII K,et al. Mechanistic modeling of bone-drilling process with experimental validation[J]. Journal of Materials Processing Technology,2014,214(4):1018-1026. [55] MACAVELIA T,GHASEMPOOR A,JANABI-SHARIFI F. Force and torque modelling of drilling simulation for orthopaedic surgery[J]. Computer Methods in Biomechanics Biomedical Engineering,2014,17(12):1285-1294. [56] ZHANG A,ZHANG S,BIAN C,et al. Modified chip-evacuation force modeling and chip-clogging prediction in drilling of cortical bone[J]. IEEE Access,2019,7:180671-180683. [57] LUGHMANI W A,BOUAZZA-MAROUF K,ASHCROFT I. Drilling in cortical bone:A finite element model and experimental investigations[J]. Journal of the Mechanical Behavior of Biomedical Materials,2015,42:32-42. [58] LUGHMANI W A,BOUAZZA-MAROUF K,ASHCROFT I. Finite element modeling and experimentation of bone drilling forces[C]//International Symposium on Dynamic Deformation and Fracture of Advanced Materials,2013. Loughborough. Journal of Physics:Conference Series. IOP:012034. [59] LEE J,RABIN Y,OZDOGANLAR O B. A new thermal model for bone drilling with applications to orthopaedic surgery[J]. Medical Engineering & Physics,2011,33(10):1234-1244. [60] BENINGTON I C,BIAGIONI P A,CROSSEY P J,et al. Temperature changes in bovine mandibular bone during implant site preparation:an assessment using infra-red thermography[J]. Journal of Dentistry,1996,24(4):263-267. [61] DAVIDSON S R,JAMES D F. Drilling in bone:modeling heat generation and temperature distribution[J]. Journal of Biomechanical Engineering,2003,125(3):305-314. [62] TU Y K,CHEN L W,CIOU J S,et al. Finite element simulations of bone temperature rise during bone drilling based on a bone analog[J]. Journal of Medical Biological Engineering,2013,33(3):269-274. [63] TU Y K,LU W H,CHEN L W,et al. Thermal contact simulation of drill bit and bone during drilling[C]//20104th International Conference on Bioinformatics and Biomedical Engineering,2010. Chengdu. IEEE:1-4. [64] TU Y K,CHEN L W,HUANG C C,et al. Finite element simulation of drill bit and bone thermal contact during drilling[C]//20082nd International Conference on Bioinformatics and Biomedical Engineering,2008. Shanghai. IEEE:1268-1271. [65] CHEN Y C,HSIAO C K,TU Y K,et al. Assessment of heat generation and risk of thermal necrosis during bone burring by means of three-dimensional dynamic elastoplastic finite element modelling[J]. Medical Engineering & Physics,2020,81:1-12. [66] CHEN Y C,TU Y K,TSAI Y J,et al. Assessment of thermal necrosis risk regions for different bone qualities as a function of drilling parameters[J]. Computer Methods Programs in Biomedicine,2018,162:253-261. [67] CHEN Y C,TU Y K,ZHUANG J Y,et al. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model[J]. Medical Biological Engineering Computing,2017,55(11):1949-1957. [68] ALAM K,KHAN M,MUHAMMAD R,et al. In-vitro experimental analysis and numerical study of temperature in bone drilling[J]. Technology Health Care,2015,23(6):775-783. [69] ALAM K. Experimental and numerical investigation of cracking behavior of cortical bone in cutting[J]. Technology Health Care,2014,22(5):741-750. [70] ALAM K,GHODSI M,AL-SHABIBI A,et al. Experimental study on the effect of point angle on force and temperature in ultrasonically assisted bone drilling[J]. Journal of Medical Biological Engineering,2018,38(2):236-243. [71] ALAM K,KHAN M,SILBERSCHMIDT V V. 3D finite-element modelling of drilling cortical bone:Temperature analysis[J]. Journal of Medical and Biological Engineering,2014,34(6):618-623. [72] FERNANDES M,FONSECA E M,JORGE R N. Influence of bone drilling parameters on the thermal stress distribution[C]//5th International Conference on Integrity-Reliability-Failure IRF2016,2016. Portugal. 517-528. [73] FERNANDES M,FONSECA E,NATAL R. Assessment of different drill diameter on bone drilling process[J]. Journal of Mechanical Engineering Biomechanics,2017,1(6):135-141. [74] FERNANDES M G,FONSECA E M,JORGE R N. Thermo-mechanical stresses distribution on bone drilling:Numerical and experimental procedures[J]. Proceedings of the Institution of Mechanical Engineers,Part L:Journal of Materials:Design Applications,2019,233(4):637-646. [75] LI X,ZHU W,WANG J,et al. Optimization of bone drilling process based on finite element analysis[J]. Applied Thermal Engineering,2016,108:211-220. [76] SEZEK S,AKSAKAL B,KARACA F. Influence of drill parameters on bone temperature and necrosis:A FEM modelling and in vitro experiments[J]. Computational Materials Science,2012,60:13-18. [77] MAANI N,FARHANG K,HODAEI M. A model for the prediction of thermal response of bone in surgical drilling[J]. Journal of Thermal Science Engineering Applications,2014,6(4):041005. [78] SUI J,SUGITA N,MITSUISHI M. Thermal modeling of temperature rise for bone drilling with experimental validation[J]. Journal of Manufacturing Science Engineering,2015,137(6):061008. [79] FELDMANN A,GAVAGHAN K,STEBINGER M,et al. Real-time prediction of temperature elevation during robotic bone drilling using the torque signal[J]. Annals of Biomedical Engineering,2017,45(9):2088-2097. [80] FELDMANN A,ANSO J,BELL B,et al. Temperature prediction model for bone drilling based on density distribution and in vivo experiments for minimally invasive robotic cochlear implantation[J]. Annals of Biomedical Engineering,2016,44(5):1576-1586. [81] AMEWOUI F,LE COZ G,BONNET A-S,et al. An analytical modeling with experimental validation of bone temperature rise in drilling process[J]. Medical Engineering & Physics,2020,84:151-160. [82] HU Y,YAN Z,LI X,et al. Prediction model of bone drilling temperature based on heat source method in surgical rehabilitation[J]. Procedia CIRP,2020,89:263-269. [83] SUI J,WANG C,SUGITA N. Experimental study of temperature rise during bone drilling process[J]. Medical Engineering & Physics,2020,78:64-73. [84] LEE J,OZDOGANLAR O B,RABIN Y. An experimental investigation on thermal exposure during bone drilling[J]. Medical Engineering & Physics,2012,34(10):1510-1520. [85] PANDEY R K,PANDA S S. Modelling and optimization of temperature in orthopaedic drilling:An in vitro study[J]. Acta of Bioengineering Biomechanics,2014,16(1):107-116. [86] KUMAR PANDEY R,PANDA S. Predicting temperature in orthopaedic drilling using back propagation neural network[J]. Procedia Engineering,2013,51:676-682. [87] SINGH G,GAHI A,JAIN V,et al. An investigation on thermal necrosis during bone drilling[J]. International Journal of Machining Machinability of Materials,2016,18(4):341-349. [88] NOORAZIZI M,IZAMSHAH R,KASIM M,et al. Effect of drill geometry parameter on surface roughness and hole morphology in surgical bone drilling[J]. International Journal of Applied Engineering Research,2017,12(6):981-986. [89] NOORAZIZI M,IZAMSHAH R,KASIM M. Effects of drill geometry and penetration angle on temperature and holes surfaces for cortical bovine bone:An in vitro study[J]. Procedia Engineering,2017,184:70-77. [90] PANDEY R K,PANDA S S. Evaluation of delamination in drilling of bone[J]. Medical Engineering Physics,2015,37(7):657-664. [91] ALAM K,PIYA S,AL-GHAITHI A,et al. Experimental investigation on the effect of drill quality on the performance of bone drilling[J]. Biomedical Engineering/Biomedizinische Technik,2020,65(1):113-120. [92] SINGH G,JAIN V,GUPTA D,et al. Optimization of process parameters for drilled hole quality characteristics during cortical bone drilling using Taguchi method[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,62:355-365. [93] KARACA F,AKSAKAL B,KOM M. Influence of orthopaedic drilling parameters on temperature and histopathology of bovine tibia:An in vitro study[J]. Medical Engineering & Physics,2011,33(10):1221-1227. [94] BURR D B. Bone,exercise,and stress fractures[J]. Exercise and Sport Sciences Reviews,1997,25:171-194. [95] AL-ABDULLAH K I A,ABDI H,LIM C P,et al. Force and temperature modelling of bone milling using artificial neural networks[J]. Measurement,2018,116:25-37. [96] SUGITA N,OSA T,MITSUISHI M. Analysis and estimation of cutting-temperature distribution during end milling in relation to orthopedic surgery[J]. Medical Engineering & Physics,2009,31(1):101-107. [97] DENIS K,VAN HAM G,VANDER SLOTEN J,et al. Influence of bone milling parameters on the temperature rise,milling forces and surface flatness in view of robot-assisted total knee arthroplasty[C]//International congress series,2001. Elsevier:300-306. [98] SUGITA N,ISHII K,SUI J,et al. Multi-grooved cutting tool to reduce cutting force and temperature during bone machining[J]. CIRP Annals,2014,63(1):101-104. [99] CONWARD M,SAMUEL J. Machining characteristics of the haversian and plexiform components of bovine cortical bone[J]. Journal of the Mechanical Behavior of Biomedical Materials,2016,60:525-534. [100] ARBABTAFTI M,MOGHADDAM M,NAHVI A,et al. Physics-based haptic simulation of bone machining[J]. IEEE Transactions on Haptics,2010,4(1):39-50. [101] MITSUISHI M,WARISAWA S,SUGITA N. Determination of the machining characteristics of a biomaterial using a machine tool designed for total knee arthroplasty[J]. CIRP Annals,2004,53(1):107-112. [102] 刘森. 骨铣削过程中切削力和温度的仿真与实验研究[D]. 哈尔滨:哈尔滨工业大学,2014.LIU Sen. Research on simulation and experiment of cutting force and temperature for bone milling[D]. Harbin:Harbin Institute of Technology,2014. [103] LIAO Z,AXINTE D,GAO D. On modelling of cutting force and temperature in bone milling[J]. Journal of Materials Processing Technology,2019,266:627-638. [104] CHEN Q S,LIU Y,DONG Q S. Modeling and experimental validation on temperature diffusion mechanism in high-speed bone milling[J]. Journal of Materials Processing Technology,2020,286:116810. [105] LIAO Z,AXINTE D A,GAO D. A novel cutting tool design to avoid surface damage in bone machining[J]. International Journal of Machine Tools and Manufacture,2017,116:52-59. [106] DAHOTRE N B,JOSHI S. Machining of bone and hard tissues[M]. Switzerland:Springer,2016. [107] 杨敏. 医用纳米粒子射流喷雾式冷却生物骨微磨削热力学作用机理与温度场动态模型[D]. 青岛:青岛理工大学,2019.YANG Min. Medical thermodynamic mechanism and temperature field dynamic model of bio-bone micro-grinding with nanoparticle jet spray cooling[D]. Qingdao:Qingdao University of Technology,2019. [108] 朱铮,胡中伟,张志斌,等. 不同砂轮磨削牛密质骨的磨削力研究[J]. 金刚石与磨料磨具工程,2014(5):13-16.ZHU Zheng,HU Zhongwei,ZHANG Zhibin,et al. Study on grinding force of bovine cortical bone by different grinding wheels[J]. Diamond & Abrasives Engineering,2014(5):13-16. [109] BABBAR A,JAIN V,GUPTA D. In vivo evaluation of machining forces,torque,and bone quality during skull bone grinding[J]. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2020,234(6):626-638. [109] ZHANG L,ZOU L,WEN D,et al. Investigation of the effect of process parameters on bone grinding performance based on on-line measurement of temperature and force sensors[J]. Sensors,2020,20(11):3325. [111] 邹磊,文东辉,张丽慧,等. 骨组织磨削力计算模型及实验研究[J]. 中国机械工程,2020,31(24):3016-3023.ZHOU Lei,WEN Donghui,ZHANG Lihui,et al. Computational model and experimental study for bone grinding force[J]. China Mechanical Engineering,2020,31(24):3016-3023. [112] TIAN H,ZHENG C,WANG C,et al. Modeling and simulation of a single abrasive grain micro-grinding force and temperature of bone[J]. Journal of Biomechanical Science Engineering,2020,15(4):20-00012. [113] SHAKOURI E,MIRFALLAH P. Infrared thermography of high-speed grinding of bone in skull base neurosurgery[J]. Proceedings of the Institution of Mechanical Engineers,Part H:Journal of Engineering in Medicine,2019,233(6):648-656. [114] ZHANG L,TAI B L,WANG G,et al. Thermal model to investigate the temperature in bone grinding for skull base neurosurgery[J]. Medical Engineering & Physics,2013,35(10):1391-1398. [115] SHIH A J,TAI B L,ZHANG L,et al. Prediction of bone grinding temperature in skull base neurosurgery[J]. CIRP Annals,2012,61(1):307-310. [116] TAI B L,ZHANG L,WANG A C,et al. Temperature prediction in high speed bone grinding using motor PWM signal[J]. Medical Engineering & Physics,2013,35(10):1545-1549. [117] WANG G,ZHANG L,WANG X,et al. An inverse method to reconstruct the heat flux produced by bone grinding tools[J]. International Journal of Thermal Sciences,2016,101:85-92. [118] 张丽慧,王广军,陈红,等. 基于导热反问题求解骨磨削过程移动边界热流[J]. 工程热物理学报,2016,37(12):2621-2625.ZHANG Lihui,WANG Guangjun,CHEN Hong,et al. Estimation of moving boundary heat flux during bone gringding based on inverse heat conduction problem[J]. Journal of Engineering Thermophysics,2016,37(12):2621-2625. [119] 张丽慧. 骨头磨削过程传热及其反问题研究[D]. 重庆:重庆大学,2014.ZHANG Lihui. Research on the heat transfer and its inverse problem for bone grinding process[D]. Chongqing:Chongqing University,2014. [120] YANG M,LI C,ZHANG Y,et al. Research on microscale skull grinding temperature field under different cooling conditions[J]. Applied Thermal Engineering,2017,126:525-537. |
[1] | 尹佳, 唐宇阳, 张俊, 赵万华. 基于复合加工特征的航空结构件频响快速预测[J]. 机械工程学报, 2023, 59(3): 200-207. |
[2] | 黄涛, 王家畴, 李昕欣. (111)硅片的高性能热堆式气体流量传感器及其封装技术研究[J]. 机械工程学报, 2023, 59(2): 30-38. |
[3] | 马晶, 张明鉴, 刘强, 刘献礼, 岳彩旭, 杨绍成. 仿生刀具研究进展综述[J]. 机械工程学报, 2022, 58(13): 261-281. |
[4] | 丁峰, 王成勇, 赖子健, 张涛, 朱旭光, 高宽. 锆基非晶合金冰冻切削加工特征及其无晶化加工工艺研究[J]. 机械工程学报, 2021, 57(3): 235-246. |
[5] | 董玉德, 张荣团, 宋忠辉, 房玉强, 白苏诚, 张方亮. 胎面花纹边界特征提取及重构方法研究[J]. 机械工程学报, 2018, 54(3): 137-147. |
[6] | 贾振元, 毕广健, 王福吉, 王小楠, 张博宇. 碳纤维增强树脂基复合材料切削机理研究[J]. 机械工程学报, 2018, 54(23): 199-208. |
[7] | 黄风立, 左春柽, 顾金梅, 王海燕, 张礼兵. 基于加工操作单元的多态蚁群装夹规划方法*[J]. 机械工程学报, 2017, 53(7): 164-172. |
[8] | 齐振超, 刘书暖, 程晖, 孟庆勋, 李原. 基于三维多相有限元的CFRP细观切削机理研究*[J]. 机械工程学报, 2016, 52(15): 170-176. |
[9] | 李琛;计时鸣;谭大鹏;刘曦泽. 软性磨粒流加工特性及近壁区域微切削机理[J]. , 2014, 50(9): 161-168. |
[10] | 李荣彬;孔令豹;张志辉;杜雪;陈新;刘强. 微结构自由曲面的超精密单点金刚石切削技术概述[J]. , 2013, 49(19): 144-155. |
[11] | 刘飞;王秋莲;刘高君. 机械加工系统能量效率研究的内容体系及发展趋势[J]. , 2013, 49(19): 87-94. |
[12] | 刘道玉;江平宇. 基于误差传递网络的工序流波动分析[J]. , 2010, 46(2): 14-21. |
[13] | 崔东辉;徐龙祥. 机械加工误差对主动磁悬浮轴承性能的影响[J]. , 2009, 45(6): 24-33. |
[14] | 刘飞;刘军;何彦. 基于参考功率曲线的大型工件加工进度状态信息的自动采集新方法[J]. , 2009, 45(10): 111-117. |
[15] | 武星星;朱喜林;杨会肖. 自适应神经模糊推理系统改进算法在机械加工参数优化中的应用[J]. , 2008, 44(1): 199-204. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||