• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2021, Vol. 57 ›› Issue (11): 33-43.doi: 10.3901/JME.2021.11.033

• 特邀专栏:生物组织精准手术器械设计制造 • 上一篇    下一篇

扫码分享

精准医疗器械生/机接触界面功能化机制研究

刘光, 郭雨润, 张力文, 张德远, 陈华伟   

  1. 北京航空航天大学机械工程及自动化学院 北京 100191
  • 收稿日期:2020-10-13 修回日期:2021-03-15 出版日期:2021-06-05 发布日期:2021-07-23
  • 通讯作者: 陈华伟(通信作者),男,1975年出生,博士,教授,博士研究生导师。主要研究方向为仿生材料与界面、界面微纳流体调控、防冰减阻。E-mail:chenhw75@buaa.edu.cn
  • 作者简介:刘光,男,1988年出生,博士研究生。主要研究方向为仿生与微纳米制造技术。E-mail:liuguang0701@163.com
  • 基金资助:
    国家重点研发计划(2019YFB1309702)和国家自然科学基金(51935001,51725501,51905022)资助项目。

The Mechanisms of Bio-instrument Interfacial Functionalization in Precision Medicine

LIU Guang, GUO Yurun, ZHANG Liwen, ZHANG Deyuan, CHEN Huawei   

  1. LIU Guang GUO Yurun ZHANG Liwen ZHANG Deyuan CHEN Huawei
  • Received:2020-10-13 Revised:2021-03-15 Online:2021-06-05 Published:2021-07-23

摘要: 随着生活水平的日益提高,人民对医疗健康关注和需求逐渐增大,精准医疗已成为全球关注热点。精准医疗器械仪器形式多样,包括微创手术器械、可穿戴传感等,几乎都会与人体组织、细胞和生理液等接触形成复杂的生/机接触界面。由于医疗器械种类、应用环境、接触模式等变化大,生/机接触表界面功能需求呈现多样化趋势,例如电刀/电凝钩的防粘、可穿戴传感界面的防湿滑等。针对不同生/机界面最常见湿表面防滑增摩和高温下防粘功能需求,本研究选取自然界湿环境生物树蛙(强湿爬附)和猪笼草(口缘超湿润滑),提取其优势功能表面的材质特性和微纳结构特征,揭示表面结构材质耦合作用的界面液膜调控规律,建立强湿摩擦和超湿润滑机制。结合自组装、微结构转印腐蚀等微纳结构制备工艺,完成仿生强湿摩擦表面和超湿润滑表面的设计与制备。最终,将仿生表面应用于精准医疗器械,仿生可穿戴传感器的湿防滑效果提升约5倍和仿生手术电刀的组织粘附量降低约55%,完成了仿生精准医疗器械可行性验证。

关键词: 仿生功能表面, 强湿摩擦, 超湿滑防粘, 精准医疗器械, 可穿戴传感, 医用电凝钩

Abstract: The demand for medical and health care gradually increases with the development of society, and precision medicine with its advantages of low risk and precise customized treatment has attracted attention from global researchers. The precision medicine instruments come in various types, e.g. microscopic surgical tools and wearable sensors, which contact human tissues, cells and biological mucus during operation, and form bio-instrument contact interfaces with complicated physical/chemical properties. Due to the change of instrument types, operating environments and contact states, the bio-instrument contact interfaces have growing requirements in diverse functions, such as the securing fixation of wearable sensors and the anti-adhesion of electrical knives and electrocoagulation hooks. These bring up the common requirements of bio-instrument interface, i.e. the strong wet attachment and high-temperature anti-adhesion properties. Here, inspired by nature, we have studied the tree frog’s toe pad (strong wet crawling) and Nepenthes alata peristome (ultra wet slippery at the oral edge) and extracted their material properties and microstructure characteristics. Their interfacial liquid adjusting rules have been revealed with the coupling effect of surface structure and materials, and the mechanism of strong wet friction and ultra-wet slippery have been established. Bioinspired strong wet friction surface and ultra-wet slipper surface have been designed and fabricated by combining the micro-nano fabrication processes, such as self-assembly and microstructure transfer etching. Finally, by applying bioinspired surfaces onto precision medical devices, and the tolerability of interfacial liquid volume of the bioinspired wearable sensor has been improved ~5 times compare to smooth surface, and the tissue adhesion on bioinspired surgical electrocoagulation is reduced by ~55%.

Key words: bioinspired surfaces, strong wet friction, ultra-slippery antiadhesion, precision medicine, wearable sensors, surgical electrocautery

中图分类号: