[1] 李猛. 大型筒体-端框对接装配在线检测系统研究[D]. 大连:大连理工大学,2015. LI Meng. Research on online detection system for large cylinder and end-frame butt assembly[D]. Dalian:Dalian University of Technology,2015. [2] 王庭庭,张元彬,谢岳良. 丝材电弧增材制造技术研究现状及展望[J]. 电焊机,2017,47(8):60-64. WANG Tingting,ZHANG Yuanbin,XIE Yueliang. Status and development prospects of the wire arc additive manufacture technology[J]. Electric Welding Machine,2017,47(8):60-64. [3] 顾江龙. CMT工艺增材制造Al-Cu-(Mg)合金的组织与性能的研究[D]. 沈阳:东北大学,2016. GU Jianglong. Study on microstructure and mechanical properties of additively manufactured Al-Cul-(Mg) alloys with the CMT process[D]. Shenyang:Northeastern University,2016. [4] DING J,COLEGROVE P,MEHNEN J,et al. Thermo-mechanical analysis of wire and arc additive layer manufacturing process on large multi-layer parts[J]. Computational Materials Science,2011,50(12):3315-3322. [5] MARTINA F,MEHNEN J,WILLIAMS S W,et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology,2012,212(6):1377-1386. [6] GU J,DING J,WILLIAMS S W,et al. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys[J]. Journal of Materials Processing Technology,2016,230:26-34. [7] GU J,DING J,WILLIAMS S W,et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy[J]. Materials Science and Engineering:A,2016,651:18-26. [8] 左为. TIG-MIG复合电弧增材制造散热器用铝合金工艺及组织与性能研究[D]. 太原:太原理工大学,2018. ZUO Wei. Study on process,microstructure and properties of aluminum alloy for radiator based on TIG-MIG hybrid arc additive manufacturing[D]. Taiyuan:Taiyuan University of Technology,2018. [9] 蒋海涛,贾娜姿,步贤政,等. 退火温度对5B06铝合金电弧增材制造组织与力学性能的影响[J]. 热加工工艺,2018,47(8):163-165. JIANG Haitao,JIA Nazi,BU Xianzheng,et al. Effects of annealing temperature on microstructure and mechanical properties of 5B06 aluminum alloy by arc additive manufacturing[J]. Hot Working Technology,2018,47(8):163-165. [10] ZHANG Y,CHEN Y,LI P,et al. Weld deposition-based rapid prototyping:a preliminary study[J]. Journal of Materials Processing Technology,2003,135(2-3):347-357. [11] 赵孝祥,孙策,叶福兴,等. MIG焊参数及路径对增材制造熔敷层尺寸的影响[J]. 焊接,2016(4):33-36,74. ZHAO Xiaoxiang,SUN Ce,YE Fuxing,et al. Effect of MIG welding parameters and trajectory on layer geometry shape in additive manufacturing[J]. Welding & Joining,2016(4):33-36,74. [12] 曹嘉明. 电弧熔丝增材制造高强钢零件工艺基础研究[D]. 武汉:华中科技大学,2017. CAO Jiaming. Fundamental study on wire and arc additive manufacturing technique for high strength steel components[D]. Wuhan:Huazhong University of Science & Technology,2017. [13] VENTURINI G,MONTEVECCHI F,SCIPPA A,et al. Optimization of WAAM deposition patterns for T-crossing features[J]. Procedia CIRP,2016,55:95-100. [14] SU C,CHEN X,GAO C,et al. Effect of heat input on microstructure and mechanical properties of Al-Mg alloys fabricated by WAAM[J]. Applied Surface Science,2019,486:431-440. [15] ZUO W,MA L,LU Y,et al. Effects of solution treatment temperatures on microstructure and mechanical properties of TIG-MIG hybrid arc additive manufactured 5356 aluminum alloy[J]. Metals and Materials International,2018,24(6):1346-1358. [16] ZHA M,MENG X T,ZHANG H M,et al. High strength and ductile high solid solution Al-Mg alloy processed by a novel hard-plate rolling route[J]. Journal of Alloys and Compounds,2017,728:872-877. [17] JIANG D,WANG C,YU J,et al. Cleavage and intergranular fracture in Al-Mg alloys[J]. Scripta Materialia,2003,49(5):387-392. |