[1] 孙佳孝,杨可,王秋雨,等. 5356铝合金TIG电弧增材制造组织与力学性能[J]. 金属学报,2021,57(5):665-674. SUN Jiaxiao,YANG Ke,WANG Qiuyu,et al. Microstructure and mechanical properties of 5356 aluminum alloy fabricated by TIG arc additive manufacturing[J]. Acta Metallurgica Sinica,2021,57(5):665-674. [2] DING D,SHEN C,PAN Z,et al. Towards an automated robotic arc-welding-based additive manufacturing system from CAD to finished part[J]. Computer-Aided Design,2016,73:66-75. [3] WILLIAMS S W,MARTINA F,ADDISON A C,et al. Wire arc additive manufacturing[J]. Materials Science and Technology,2016,32 (7):641-647. [4] 李明祥,张涛,于飞,等. 金属电弧熔丝增材制造及其复合制造技术研究进展[J]. 航空制造技术,2019,62(17):14-21. LI Mingxiang,ZHANG Tao,YU Fei,et al. Research progress of wire and arc additive manufacturing and hybrid manufacturing technology for metal components[J]. Aeronautical Manufacturing Technology,2019,62(17):14-21. [5] XIONG J,LI R,LEI Y Y,et al. Heat propagation of circular thin-walled parts fabricated in additive manufacturing using gas metal arc welding[J]. Journal of Materials Processing Technology,2017,251:12-19. [6] 王晓光,刘奋成,方平,等. CMT电弧增材制造316L不锈钢成形精度与组织性能分析[J]. 焊接学报,2019,40(5):100-106. WANG Xiaoguang,LIU Fencheng,FANG Ping,et al. Influence of gap on droplet transition of GMAW vertical welding and characteristics of temperature field[J]. Transactions of the China Welding Institution,2019, 40(5):100-106. [7] 黄崇权,刘奋成,王晓光. CMT电弧增材制造GH4169合金的组织和拉伸性能[J]. 精密成形工程,2019,11(4):89-96. HUANG Chongquan,LIU Fencheng,WANG Xiaoguang. Microstructure and tensile property of GH4169 superalloy fabricated by CMT-arc additive manufacturing[J]. Journal of Netshape Forming Engineering,2019,11(4):89-96. [8] 郝轩,黄永德,陈伟,等. 基于CMT技术的铝合金电弧增材制造研究现状[J]. 精密成形工程,2018,10(5):88-94. HAO Xuan,HUANG Yongde,CHEN Wei. Research status of the aluminium alloy arc additive manufacturing technology based on the CMT[J]. Journal of Netshape Forming Engineering,2018,10(5):88-94. [9] 莫非,李佳蒙. 浅析CMT技术在铝合金电弧增材制造中的应用[J]. 现代制造技术与装备,2019(8):107-113. MO Fei,LI Jiameng. Application of CMT technology in aluminum alloy arc addition manufacturing[J]. Modern Manufacturing Technology and Equipment,2019(8):107-113. [10] 符卫,胡绳荪,尹玉环. 熔滴过渡对脉冲熔化极氩弧焊快速成形的影响[J]. 机械工程学报,2009,45(4):95-99. FU wei,HU Shengsun,YIN Yuhuan. Effect of droplet transition on rapid prototyping by P-MIG[J]. Journal of Mechanical Engineering,2009,45(4):95-99. [11] 张洪涛,冯吉才,胡乐亮. CMT能量输入特点与熔滴过渡行为[J]. 材料科学与工艺,2012,20(2):129-139. ZHANG Hongtao,FENG Jicai,HU Leliang. Energy input and metal transfer behavior of CMT welding process[J]. Materials Science and Technology,2012,20(2):129-139. [12] YAN Z,ZHAO Y,JIANG F,et al. Metal transfer behaviour of CMT-based step-over deposition in fabricating slant features[J]. Journal of Manufacturing Processes,2021,71:147-155. [13] PANG J,HU S,SHEN J,et al. Arc characteristics and metal transfer behavior of CMT+P welding process[J]. Journal of Materials Processing Technology,2016,238:212-217. [14] SUN Z,LV Y,XU B,et al. Investigation of droplet transfer behaviours in cold metal transfer (CMT) process on welding Ti-6Al-4V alloy[J]. The International Journal of Advanced Manufacturing Technology,2015,80:2007-2014. [15] 赵文勇,曹熙勇,杜心伟,等. CMT电弧增材制造过程传热传质数值模拟[J]. 机械工程学报,2021,57(1):267-276. ZHAO Wenyong,CAO Xiyong,DU Xinwei,et al. Numerical simulation of heat and mass transfer in CMT-based additive manufacturing[J]. Journal of Mechanical Engineering,2021,57(1):267-276. [16] CADIOU S,COURTOIS M,CARIN M,et al. 3D heat transfer,fluid flow and electromagnetic model for cold metal transfer wire arc additive manufacturing (CMT-WAAM)[J]. Additive Manufacturing,2020,36:101541. [17] 周祥曼,张海鸥,王桂兰,等. 电弧增材成形中熔积层表面形貌对电弧形态影响的仿真[J]. 物理学报,2016,65(3):038103. ZHOU Xiangman,ZHANG Haiou,WANG Guilan. Simulation of the influences of surface topography of deposited layer on arc shape and state in arc based additive forming[J]. Acta Physica Sinica,2016,65(3):038103. [18] ZHOU X M,ZHANG H O,WANG G L,et al. Three-dimensional numerical simulation of arc and metal transport in arc welding based additive manufacturing[J]. International Journal of Heat and Mass Transfer,2016,103:521-537. [19] 李春凤,肖笑,尹玉祥,等. TIG电弧增材熔池行为的数值模拟研究现状[J]. 材料热处理学报,2020,41(7):25-32. LI Chunfeng,XIAO Xiao,YIN Yuxiang. Research status of numerical simulation of TIG arc additive molten pool behavior[J]. Transactions of Materials and Heat Treatment,2020,41(7):25-32. [20] 王金彪. GTAW工艺参数对钛合金增材制造成形影响研究[D]. 哈尔滨:哈尔滨工程大学,2017. WANG Jinbiao. Research on the influence of GTAW process parameters on titanium alloy additive manufacturing forming[D]. Harbin:Harbin University of Science and Technology,2017. [21] HU J,TSAI H L. Heat and mass transfer in gas metal arc welding. part I:The arc[J]. International Journal of Heat and Mass Transfer,2007,50:833-846. [22] HU J,TSAI H L. Heat and mass transfer in gas metal arc welding. part II:The metal[J]. International Journal of Heat & Mass Transfer,2007,50:808-820. [23] TRAIDIA A,ROGER F. Numerical and experimental study of arc and weld pool behavior for pulsed current GTA welding[J]. International Journal of Heat and Mass Transfer,2011,54:2163-2179. [24] DIAO Q Z,TSAI H L. Modeling of solute redistribution in the mushy zone during solidification of aluminum-copper alloys[J]. Metallurgical and Materials Transactions A,1993,24:963-973. [25] LOWKE J J,MORROW R,HAIDAR J. A simplified unified theory of arcs and their electrodes[J]. Journal of Physics D Applied Physics,1997,30(14):2033-2042. [26] LOWKE J J,KOVITYA P,SCHMIDT H P. Theory of free-burning arc columns including the influence of the cathode[J]. Journal of Physics D Applied Physics,1992,25(11):1600-1606. [27] BRACKBILL J U,KOTHE D B,ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics,1992,100(2):335-354. [28] ZHAO Y Y,CHUNG H. Numerical simulation of droplet transfer behavior in variable polarity gas metal arc welding[J]. International Journal of Heat & Mass Transfer,2017,111:1129-1141. [29] RAO Z H,HU J,LIAO S M,et al. Modeling of the transport phenomena in GMAW using argon-helium mixtures. part I-the arc[J]. International Journal of Heat & Mass Transfer,2010,53:5707-5721. [30] ROKHLIN S I,GUU A C. A study of arc force,pool depression and weld penetration during gas tungsten arc welding[J]. Welding Journal,1993,8(8):S381-S390. |