• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2019, Vol. 55 ›› Issue (15): 1-9.doi: 10.3901/JME.2019.15.001

• 特邀专栏:增材制造技术 •    下一篇

选区激光熔化成形碳纳米管增强铝基复合材料成形机制及力学性能研究

饶项炜1,2, 顾冬冬1,2, 席丽霞1,2   

  1. 1. 南京航空航天大学材料科学与技术学院 南京 210016;
    2. 江苏省高性能金属构件激光增材制造工程实验室 南京 210016
  • 收稿日期:2018-12-13 修回日期:2019-02-14 出版日期:2019-08-05 发布日期:2019-08-05
  • 通讯作者: 顾冬冬(通信作者),男,1980年出生,博士,教授,博士研究生导师。主要研究方向为金属激光增材制造及3D打印。E-mail:dongdonggu@nuaa.edu.cn
  • 作者简介:饶项炜,男,1993年出生。主要研究方向为碳纳米管增强金属基复合材料的激光增材制造。E-mail:xiangweirao@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金重点(51735005)、国家重点研发计划(2016YFB1100101、2018YFB1106302)和江苏高校优势学科建设工程资助项目。

Forming Mechanism and Mechanical Properties of Carbon Nanotube Reinforced Aluminum Matrix Composites by Selective Laser Melting

RAO Xiangwei1,2, GU Dongdong1,2, XI Lixia1,2   

  1. 1. College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016;
    2. Jiangsu Provincial Engineering Laboratory for Laser Additive Manufacturing of High-performance Metallic Components, Nanjing 210016
  • Received:2018-12-13 Revised:2019-02-14 Online:2019-08-05 Published:2019-08-05

摘要: 铸造铝合金具有优良的铸造焊接性能等优点,但是低硬度和较差的耐磨性能限制了其应用的范围,成形铝基复合材料构件是一种有效途径。采用选区激光熔化(Selective laser melting,SLM)增材制造技术成形碳纳米管增强铝基纳米复合材料(CNT/Al)构件,通过设置不同的激光参数,研究不同激光能量密度(η)下试样的致密化行为、物相和显微组织及其力学性能。研究表明:随着η从150 J/m增加至187.5 J/m,致密度从94.49%上升至99.83%。高能量密度增大了熔池的尺寸和温度,导致液相的黏度下降和润湿性能提高,使得液相均匀铺展,熔池间搭接程度上升以及孔洞等冶金缺陷减少,致密化程度上升。成形试样的主要物相为Al9Si和Si,碳纳米管(CNTs)外壁与基体发生原位反应生成了Al4C3,提高了界面稳定性。成形试样的硬度和耐磨性能与致密度变化表现为正相关。当η =187.5 J/m时,成形试样的平均显微硬度为164.3 HV0.2,摩擦因数下降至0.21,强度和延伸率分别为452 MPa和9.0%,表现出优良的力学性能。

关键词: 激光技术, 铝合金, 选区激光熔化, 组织与性能

Abstract: Cast aluminum alloys have excellent casting and welding properties, but low hardness and poor wear resistance limit the range of applications, and fabrication of aluminum matrix composite parts is often an effective method. Carbon nanotube reinforced aluminum matrix nanocomposite parts (CNT/Al) are prepared by selective laser melting additive manufacturing technology. The densification behavior, phase, microstructure and mechanical properties under different laser energy densities (η) of as-fabricated specimens are investigated by setting various laser parameters. The relative density increases from 94.49% to 99.83% with increasing η from 150 J/m to 187.5 J/m. High laser energy density increases the size and the temperature of the molten pool, resulting in a decrease in the viscosity of the liquid and an increase in wettability, which leads to the uniform spreading of liquid phase. Besides, the degree of overlap between molten pools increases and the metallurgical defects such as pores reduced. As a result, the densification level increases. The main phases of as-fabricated specimens are Al9Si and Si, and the reaction of the outer layers of carbon nanotubes (CNTs) and the matrix generates Al4C3, which improves the interface stability. The hardness and wear resistance of as-fabricated specimens have a positive correlation with the relative densities. When η is settled at 187.5 J/m, the average microhardness of the specimen is 164.3 HV0.2, the coefficient of friction decreases to 0.21, and the strength and elongation are 452 MPa and 9.0%, respectively, showing excellent mechanical properties.

Key words: aluminum alloys, laser technique, microstructure and properties, selective laser melting

中图分类号: