[1] 张建军,刘卫东,李乐,等. 未知环境下水下机械手智能抓取的自适应阻抗控制[J]. 上海交通大学学报,2019,53(3):341-347. ZHANG Jianjun,LIU Weidong,LI Le,et al. Adaptive impedance control for underwater manipulator intelligent grasping in unknown environment[J]. Journal of Shanghai Jiaotong University,2019,53(3):341-347. [2] LUO Y,TAO J,SUN Q,et al. A new underwater robot for crack welding in nuclear power plants[C]//2018 IEEE International Conference on Robotics and Biomi-metics (ROBIO). IEEE,2018:77-82. [3] LI Z,TAO J,LUO Y,et al. Dynamic analysis of a cable underwater robot in a nuclear reaction pool[C]//2016 IEEE International Conference on Mechatronics and Automation. IEEE,2016:2278-2283. [4] 王建峰,孙清洁,张顺,等. 基于电弧气泡调控的水下湿法焊接稳定性研究[J]. 机械工程学报,2018,54(14):50-57. WANG Jianfeng,SUN Qingjie,ZHANG Shun,et al. Investigation on underwater wet welding process stability based on the arc bubble control[J]. Journal of Mechanical Engineering,2018,54(14):50-57. [5] 王艳艳,刘开周,封锡盛. 基于强跟踪平方根容积卡尔曼滤波的纯方位目标运动分析方法[J]. 计算机测量与控制,2016,24(11):136-140. WANG Yanyan,LIU Kaizhou,FENG Xisheng. Bearings only target motion analysis based on strong tracking square-root cubature Kalman filter[J]. Computer Measurement & Control,2016,24(11):136-140. [6] 张铭钧,褚振忠. 自主式水下机器人自适应区域跟踪控制[J]. 机械工程学报,2014,50(19):50-57. ZHANG Mingjun,CHU Zhenzhong. Adaptive region tracking control for autonomous underwater vehicle[J]. Journal of Mechanical Engineering,2014,50(19):50-57. [7] YANG Chao,YAO Feng,ZHANG Mingjun. Adaptive backstepping terminal sliding mode control method based on recurrent neural networks for autonomous underwater vehicle[J]. Chinese Journal of Mechanical Engineering,2018,31(06):228-243. [8] HUANG Hai,ZHANG Guocheng,LI Jiyong,et al. Model based adaptive control and disturbance compensation for underwater vehicles[J]. Chinese Journal of Mechanical Engineering,2018,31(1):114-126. [9] BLANKE M,LINDEGAARD K P,FOSSEN T I. Dynamic model for thrust generation of marine propellers[J]. IFAC Proceedings Volumes,2000,33(21):353-358. [10] FOSSEN T I. Guidance and control of ocean vehicles[M]. New York:John Wiley & Sons Inc,1994. [11] BUHL JR M L. New empirical relationship between thrust coefficient and induction factor for the turbulent windmill state[R]. National Renewable Energy Lab. (NREL),Golden,CO (United States),2005. [12] WHITCOMB L L,YOERGER D R. Development,comparison,and preliminary experimental validation of nonlinear dynamic thruster models[J]. IEEE Journal of Oceanic Engineering,1999,24(4):481-494. [13] BACHMAYER R,WHITCOMB L L. Adaptive parameter identification of an accurate nonlinear dynamical model for marine thrusters[J]. Transactions-American Society of Mechanical Engineers Journal of Dynamic Systems Measurement and Control,2003,125(3):491-493. [14] KIM J,CHUNG W K. Accurate and practical thruster modeling for underwater vehicles[J]. Ocean Engineering,2006,33(5-6):566-586. [15] TRAN M,BINNS J,CHAI S,et al. A practical approach to the dynamic modelling of an underwater vehicle propeller in all four quadrants of operation[J]. Proceedings of the Institution of Mechanical Engineers,Part M:Journal of Engineering for the Maritime Environment,2019,233(1):333-344. [16] PAOLUCCI L,GRASSO E,GRASSO F,et al. Development and testing of an efficient and cost-effective underwater propulsion system[J]. Proceedings of the Institution of Mechanical Engineers,Part I:Journal of Systems and Control Engineering,2019:0959651819829627. [17] QIN W,HUANG B,WANG G,et al. Numerical modelling of unsteady cavitation and induced noise around a marine propeller[J]. Ocean Engineering,2018,160(1):143-155. [18] MOHAMED M H. Reduction of the generated aero-acoustics noise of a vertical axis wind turbine using CFD (Computational Fluid Dynamics) techniques[J]. Energy,2016,96(1):531-544. [19] KUBOTA A,KATO H,YAMAGUCHI H. A new modelling of cavitating flows:A numerical study of unsteady cavitation on a hydrofoil section[J]. Journal of Fluid Mechanics,2006,240:59-96. |