[1] FANG N X, XU Jun, MA Chu, et al. From acoustic metamaterials to functional metasurfaces[J]. Journal of the Acoustical Society of America, 2014, 135(4):2221. [2] NI Xingjie, WONG Zijing, MREJEN M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254):1310-1314. [3] YANG Yihao, JING Liqiao, ZHENG Bin, et al. Full-polarization 3D metasurface cloak with preserved amplitude and phase[J]. Advanced Materials, 2016, 28(32):6866-6871. [4] PEREDA A T, CAMINITA F, MARTINI E, et al. Experimental validation of a Ku-band dual circularly polarized metasurface antenna[J]. IEEE Transactions on Antennas & Propagation, 2018, 66(3):1153-1159. [5] 刘敏,张斌珍,段俊萍. 一种基于超材料的宽频带定向性微带天线[J]. 机械工程学报, 2018, 54(9):64-68. LIU Min, ZHANG Binzhen, DUAN Junping. Broadband and directional microstrip antenna based on metamaterials[J]. Journal of Mechanical Engineering, 2018, 54(9):64-68. [6] FAN Wen, YAN Bing, WANG Zengbo, et al. Three-dimensional all-dielectric metamaterial solid immersion lens for subwavelength imaging at visible frequencies[J]. Science Advances, 2016, 2(8):e1600901. [7] SLEASMAN T, F.IMANI M, GOLLUB J N, et al. Dynamic metamaterial aperture for microwave imaging[J]. Applied Physics Letters, 2015, 107(20):1289. [8] 吴九汇,马富银,张思文,等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13):68-78. WU Jiuhui, MA Fuyin, ZHANG Siwen, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13):68-78. [9] 夏百战,覃缘,于德介,等. 区间模型下声学超材料的可靠性优化[J]. 机械工程学报, 2016, 52(13):94-102. XIA Baizhan, QIN Yuan, YU Dejie, et al. Reliability-based optimization of the acoustic metamaterial under the interval model[J]. Journal of Mechanical Engineering, 2016, 52(13):94-102. [10] 于靖军,谢岩,裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13):1-14. YU Jingjun, XIE Yan, PEI Xu. State-of-art of metamaterials with negative Poisson's ratio[J]. Journal of Mechanical Engineering, 2018, 54(13):1-14. [11] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20):207402. [12] BHATTACHARYYA S, SRIVASTAVA K V. Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator[J]. Journal of Applied Physics, 2014, 115(6):4184. [13] 顾超,屈绍波,裴志斌,等. 基于电阻膜的宽频带超材料吸波体的设计[J]. 物理学报, 2011, 60(8):662-666. GU Chao, QU Shaobo, PEI Zhibin, et al. Design of a wide-band metamaterial absorber based on resistance films[J]. Acta Phys. Sin., 2011, 60(8):662-666. [14] XIONG Han, HONG Jinsong, LUO Chaoming, et al. An ultrathin and broadband metamaterial absorber using multi-layer structures[J]. Journal of Applied Physics, 2013, 114(6):OP181. [15] GOGOI D J, BHATTACHARYYA N S. Metasurface absorber based on water meta "molecule" for X-band microwave absorption[J]. Journal of Applied Physics, 2018, 124(7):075106. [16] 张磊,卓林蓉,汤桂平,等.增材制造超材料及其隐身功能调控的研究进展[J]. 航空材料学报,2018,38(3):10-19. ZHANG Lei, ZHUO Linrong, TANG Guiping, et al. Additive manufacture of metamaterials:A review[J]. Journal of Aeronautical Materials, 2018, 38(3):10-19. [17] 李涤尘,贺健康,田小永,等. 增材制造:实现宏微结构一体化制造[J]. 机械工程学报, 2013, 49(6):129-135. LI Dichen, HE Jiankang, TIAN Xiaoyong, et al. Additive manufacturing:Integrated fabrication of macro/microstructures[J]. Journal of Mechanical Engineering, 2013, 49(6):129-135. [18] 熊益军,周丁. 一种基于3D打印技术的结构型宽频吸波超材料[J]. 物理学报, 2018, 67(8)::84202. XIONG Yijun, ZHOU Ding. Structural broadband absorbing metamaterial based on three-dimensional printing technology[J]. Acta Phys. Sin., 2018, 67(8):84202. [19] BRADLEY P J, TORRICO M O M, BRENNAN C, et al. Printable all-dielectric water-based absorber[J]. Scientific Reports, 2018, 8(1):14490. [20] REN Jian, YIN Jiayuan. Cylindrical-water-resonatorbased ultra-broadband microwave absorber[J]. Optical Materials Express, 2018, 8(8):2060-2071. [21] ELLISON W J. Permittivity of pure water, at standard atmospheric pressure, over the frequency range 0-25 THz and the temperature range 0-100℃[J]. Journal of Physical and Chemical Reference Data, 2007, 36(1):1. [22] ZHAO Junming, WEI Shu, WANG Cheng, et al. Broadband microwave absorption utilizing water-based metamaterial structures[J]. Optics Express, 2018, 26(7):8522-8531. [23] HUANG Xiaojun, YANG Helin, SHEN Zhaoyang, et al. Water-injected all-dielectric ultra-wideband and prominent oblique incidence metamaterial absorber in microwave regime[J]. Journal of Physics D:Applied Physics, 2017, 50(38):385304. [24] GOGOI D J, BHATTACHARYYA N S. Embedded dielectric water "atom" array for broadband microwave absorber based on Mie resonance[J]. Journal of Applied Physics, 2017, 122(17):175106. [25] XIE Jianwen, ZHU Weiren, RUKHLENKO I D, et al. Water metamaterial for ultra-broadband and wide-angle absorption[J]. Optics Express, 2018, 26(4):5052-5059. [26] SONG Qinghua, ZHANG Wu, WU P C, et al. Water-resonator-based metasurface:An ultrabroadband and near-unity absorption[J]. Advanced Optical Materials, 2017, 5(8):1601103. |