• CN:11-2187/TH
  • ISSN:0577-6686

›› 2009, Vol. 45 ›› Issue (10): 254-260.

• 论文 • 上一篇    下一篇

扫码分享

基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量优化设计

孙林;杨世元   

  1. 合肥工业大学电子科学与应用物理学院;合肥工业大学仪器科学与光电工程学院
  • 发布日期:2009-10-15

Prediction for Surface Roughness of Profile Grinding and Optimization of Grinding Parameters Based on Least Squares Support Vector Machine

SUN Lin;YANG Shiyuan   

  1. School of Electronic Science & Applied Physics, Hefei University of Technology School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology
  • Published:2009-10-15

摘要: 在分析和比较目前常用的预测方法基础上,提出一种基于最小二乘支持矢量机的成形磨削表面粗糙度预测方法。一方面,该方法能较好地解决小样本学习问题,避免人工神经网络等智能方法在对粗糙度进行预测时所表现出来的过学习、泛化能力弱等缺点;另一方面,用等式约束代替传统支持矢量机的不等式约束,减小了模型的复杂度,加快了求解速度。试验表明,该模型具有预测精度高、速度快、容易实现等优点,适合对磨削表面粗糙度的预测。在成功建立预测模型的基础上,还提出磨削参数优化设计的可行性方案,建立表面粗糙度与磨削用量之间的关系图,对于优化设计磨削用量、提高加工零件表面质量具有一定的指导意义。

关键词: 表面粗糙度, 成形磨削, 预测, 最小二乘支持矢量机

Abstract: A new prediction method based on least squares support vector machine is put forward for surface roughness of profile grinding after comparing and analyzing the common prediction methods. For one thing, it can solve the small sample learning problem better and avoid such disadvantages as over-learning and weak generalization ability that the artificial neural network prediction has, because support vector machine recognition model is based on structure risk minimization. For another thing, this method is more simple and quick in finding answer because it uses equality constraints instead of inequality constraints. The application example shows that the model is higher in accuracy and learning speed, easier to realize and so on. So it is more suitable for prediction for calorific value of coal. With the precise prediction model, a feasible plan for optimizing grinding parameters is put forward and a figure about the relation between grinding parameters and surface roughness is set up. Therefore, it has certain guiding significance to optimizing grinding parameters and improving the surface quality of finished parts.

Key words: Least squares support vector machine, Prediction, Profile grinding, Surface roughness

中图分类号: