• CN:11-2187/TH
  • ISSN:0577-6686

›› 2002, Vol. 38 ›› Issue (5): 80-85.

• 论文 • 上一篇    下一篇

扫码分享

小波变换方法评价曲线的分形特征

王安良;杨春信   

  1. 中科院力学所非线性力学国家重点实验室;北京航空航天大学
  • 发布日期:2002-05-15

WAVELET TRANSFORM METHOD EVALUATE THE FRACTAL CHARACTERIZATION OF PROFILES

Wang Anliang;Yang Chunxin   

  1. Institute of Mechanics,Chinese Academy of Sciences Beijing University of Aeronautics and Astronautics
  • Published:2002-05-15

摘要: 应用小波变换对Kiesswetter曲线和3种方法生成的分数维布朗运动(FBm)进行了分析,验证了该方法计算分形维数具有较高的精度。在宽广的分形维数范围内,与其他7种计算方法比较表明,小波变换方法的精确性和一致性都最好。小波变换为进一步分辨确定性信号、分形特征的信号或完全随机性的信号提供了一种有效工具,为评价粗糙表面形貌的分形特征提供了前提条件。

关键词: Kiesswetter曲线, 分数维布朗运动, 分形维数, 小波变换

Abstract: Based on the Kiesswetter curve and fractal Brown motion functions with known fractal dimension,wavelet transform method can present accurately the fractal dimension. Furthermore,covering a wide fractal dimension,it is indicated that wavelet transform method is better for calculating the fractal dimensions of the fractal profiles than other 7 methods,which are the box dimension method,the yard stick method,the co-variation method,the structure function method,the variation method,the power spectrum method and the rescaled range analysis method. Wavelet transform method can be applied to distinguish the determinacy,fractal and stochastic process,and to evaluate the fractal characterization of surface profiles.

Key words: Kiesswetter curve, Fractal Brown motion, Fractal dimension, Wavelet transform

中图分类号: