• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2024, Vol. 60 ›› Issue (12): 41-50.doi: 10.3901/JME.2024.12.041

• 特邀专栏:可解释可信AI驱动的智能监测与诊断 • 上一篇    下一篇

扫码分享

小波核编码的脉冲卷积神经网络在可解释性智能诊断中的应用研究

王俊1, 杨轶青1, 刘金朝2, 沈长青1, 黄伟国1, 朱忠奎1   

  1. 1. 苏州大学轨道交通学院 苏州 215131;
    2. 中国铁道科学研究院集团有限公司基础设施检测研究所 北京 100081
  • 收稿日期:2023-08-06 修回日期:2024-02-01 出版日期:2024-06-20 发布日期:2024-08-23
  • 作者简介:王俊,男,1987年出生,博士,教授,博士研究生导师。主要研究方向为机电系统动态监控、故障诊断与智能维护。E-mail:junking@suda.edu.cn;杨轶青,男,1999年出生。主要研究方向为机电设备智能诊断。E-mail:20214246006@stu.suda.edu.cn;刘金朝,男,1971年出生,博士,研究员,博士研究生导师。主要研究方向为铁路检测数据分析与数值仿真。E-mail:liujinzhao@rails.cn;沈长青,男,1987年出生,博士,教授,博士研究生导师。主要研究方向为机械故障诊断与寿命预测。E-mail:cqshen@suda.edu.cn;黄伟国(通信作者),男,1981年出生,博士,教授,博士研究生导师。主要研究方向为机械设备状态监测与故障诊断、信号特征提取方法。E-mail:wghuang@suda.edu.cn;朱忠奎,男,1974年出生,博士,教授,博士研究生导师。主要研究方向为机械设备故障诊断、车辆系统动力学与控制、测试技术与信号处理。E-mail:zhuzhongkui@suda.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(52275121,52075353,52272440)。

Interpretable Intelligent Diagnosis Based on Wavelet Kernel Encoded Spiking Convolutional Neural Networks

WANG Jun1, YANG Yiqing1, LIU Jinzhao2, SHEN Changqing1, HUANG Weiguo1, ZHU Zhongkui1   

  1. 1. School of Rail Transportation, Soochow University, Suzhou 215131;
    2. Infrastructure Inspection Research Institute, China Academy of Railway Sciences Co., Ltd., Beijing 100081
  • Received:2023-08-06 Revised:2024-02-01 Online:2024-06-20 Published:2024-08-23

摘要: 近年来,人工神经网络在可解释性机械故障智能诊断研究中已经取得一些成果。然而人工神经网络本身不是模拟生物神经网络的学习机制,缺乏生物可解释性。脉冲神经网络能够很好地模拟生物信号在神经网络中的传播,具有较强的生物可解释性,但当前的脉冲编码方式缺乏物理可解释性。提出一种兼具物理可解释性和生物可解释性的小波核编码的脉冲卷积神经网络,用于轴承端到端的可解释性智能诊断。首先,设计一种小波核编码器,利用小波核卷积从轴承振动信号中提取多尺度物理特征,进而采用脉冲神经元将其编码为脉冲编码信息;其次,构建多层脉冲卷积特征提取器,从脉冲编码信息中提取深层状态特征;最后,建立脉冲分类器,通过输出层脉冲神经元的放电概率预测轴承的健康状态。采用两组轴承健康状态数据集验证所提模型的可解释性和有效性。试验结果表明:脉冲编码信息能够清晰反映轴承不同健康状态,具有物理可解释性;所提方法能够实现端到端的模型训练,故障诊断准确率与传统卷积神经网络相当,而模型收敛的稳定性更优。

关键词: 智能诊断, 脉冲神经网络, 生物可解释性, 物理可解释性, 小波变换

Abstract: In recent a few years, some achievements have been obtained for artificial neural networks(ANN) in interpretable intelligent diagnosis of mechanical faults. However, the ANN model itself does not mimic the learning mechanism of biological neural networks, thus lacks biological interpretability. Spiking neural networks(SNN) can well simulate how biological signals are transmitted in the neural networks, which has good biological interpretability. However, the current spiking encoding manners have no physical interpretability. A model of wavelet kernel encoded spiking convolutional neural networks(WKE-SCNN) is proposed for bearing end-to-end interpretable intelligent diagnosis, which has both physical interpretability and biological interpretability. First, a wavelet kernel encoder is designed, in which multi-scale physical features are extracted from bearing vibration signals using wavelet kernel convolution, and spiking encoding information is obtained using spiking neurons. Then, a multi-layer spiking convolution feature extractor is constructed, which is used to extract deep-level state features from the spiking encoding information. Finally, a spiking classifier is established, which predicts the bearing health states according to fire rates of the spiking neurons in the output layer. Two groups of bearing datasets are utilized to verify the interpretability and effectiveness of the proposed model. Experimental results show that, the spiking encoding information can clearly reflect different health states of the bearings, thus has physical interpretability; the proposed WKE-SCNN can be trained in the end-to-end manner, and the fault diagnosis accuracy is comparative to the traditional convolutional neural networks(CNN), while the convergence stability of the proposed method is superior to the traditional CNN.

Key words: intelligent diagnosis, spiking neural networks, biological interpretability, physical interpretability, wavelet transform

中图分类号: