• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 237-248.doi: 10.3901/JME.2025.21.237

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

多级可调刚度刚柔耦合仿生机械手设计与验证

王振宇1, 孙建伟2, 张美玲2, 丛明1,3, 褚金奎1,3   

  1. 1. 大连理工大学机械工程学院 大连 116024;
    2. 长春工业大学机器人研究院 长春 130012;
    3. 大连理工大学宁波研究院 宁波 315032
  • 收稿日期:2025-02-24 修回日期:2025-08-15 发布日期:2025-12-27
  • 作者简介:王振宇,男,1998年出生,博士研究生。主要研究方向为机械超材料,抓取机器人。E-mail:wangzhenyu@mail.dlut.edu.cn
    褚金奎(通信作者),男,1965年出生,博士,教授,博士研究生导师。主要研究方向为机构学及CAD、智能机器人及微机器人和MEMS。E-mail:chujk@dlut.edu.cn
  • 基金资助:
    国家自然科学基金(52175265, 52275006)和吉林省科技厅重点研发 (20240302067GX)资助项目。

Design and Validation of a Multi-stage Adjustable-stiffness Rigid-flexible Coupled Bionic Manipulator

WANG Zhenyu1, SUN Jianwei2, ZHANG Meiling2, CONG Ming1,3, CHU Jinkui1,3   

  1. 1. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024;
    2. Institute of Robotics, Changchun University of Technology, Changchun 130012;
    3. Ningbo Institute of Dalian University of Technology, Ningbo 315032
  • Received:2025-02-24 Revised:2025-08-15 Published:2025-12-27

摘要: 针对刚度调控困难以及因刚度显著差异导致的刚柔界面结合问题,提出了一种结合仿生设计的多级可调刚度机械手及其刚柔耦合一体化制备工艺。基于人体骨骼-肌肉协同机制设计了三段式手指结构,利用刚性、柔性材料复现骨骼、肌肉特征。融合增材制造与浇筑工艺的优势,采用结构嵌入与胶接冗余设计,刚柔界面结合强度提升120%(106 N),瞬态断裂力可达单节刚柔部件自重的2 400倍。通过结构物理约束重构替代肌肉拮抗作用,提出基于多级拮抗力臂的刚度调节策略。该策略在保留独立屈肌腱驱动结构的基础上,引入棘齿锁定机构,实现肌腱止点在远节指骨轨道内的多位置切换,进而调节拮抗力臂长度,赋予手指可调刚度能力。相比传统多肌腱协同控制方式,该方法在无需复杂控制系统的前提下,实现了调控比1:1.56的宽域刚度调节和43.5°至83.6°(跨度92.2%)的可达空间调控。基于Denavit-Hartenberg(D-H)参数法建立运动学模型,结合静力学分析验证了拮抗力臂对末端力和工作空间的影响规律。实验结果表明,该机械手能够实现4~234 g范围的不规则形状、刚性与柔性混杂物品的分级匹配夹取,验证了变刚度机制与负载的有效匹配能力,通过预设多工况及重复性场景验证了抓取稳定性,展现了其在非结构化抓取任务中的应用潜力。

关键词: 刚柔耦合机械手, 变刚度, 一体化制备, 运动学分析, 抓取实验

Abstract: To address the challenges of variable stiffness control and the issues related to the bonding at the rigid-flexible interface caused by significant stiffness differences, a bionic multi-stage variable-stiffness manipulator and its rigid-flexible integrated fabrication process are proposed. A three-stage finger structure is designed based on the coordination mechanism of the human skeletal-muscular system, with rigid and flexible materials replicating the characteristics of bones and muscles, respectively. By combining the advantages of additive manufacturing and casting processes, a structural embedding and adhesive redundancy design is employed, resulting in a 120% improvement in the bonding strength at the rigid-flexible interface (106 N), with a transient fracture force reaching up to 2 400 times the self-weight of a single rigid-flexible segment. Structural physical constraints are reconfigured to replace biological muscle antagonism, and a stiffness modulation strategy based on multi-stage antagonistic lever arms is introduced. An independent flexor tendon is retained as the primary actuation element, while a ratchet-based locking mechanism is incorporated to enable multi-position adjustment of the tendon endpoint within the distal phalanx track. This allows for dynamic regulation of the antagonistic lever arm length and thus realization of tunable stiffness. The complexity associated with traditional multi-tendon coordinated control is effectively avoided, enabling wide-range stiffness modulation with a regulation ratio of 1:1.56 and controllable joint movement from 43.5° to 83.6°, covering a span of 92.2%, without reliance on complex control systems. A kinematic model is established using the Denavit-Hartenberg (D-H) parameter method, and the influence of the antagonistic lever on end-force and workspace is verified through static analysis. Experimental results demonstrate that the manipulator is capable of graded matching and adaptive grasping of objects ranging from 4 g to 234 g, including irregularly shaped, rigid, and flexible mixed items. The effective matching capability of the variable stiffness mechanism with varying load requirements is validated, and the grasping stability is verified through a series of predefined multi-condition and repetitive scenarios, showing its potential for applications in unstructured grasping tasks.

Key words: rigid-flexible coupled manipulator, variable stiffness, integrated fabrication, kinematic analysis, grasping experiments

中图分类号: