• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (19): 91-100.doi: 10.3901/JME.2025.19.091

• 机器人及机构学 • 上一篇    

扫码分享

变形轮爪构型无人平台结构优化与运动学分析

刘建峰1,2, 孟庆凯1, 舒用杰1, 柯志芳1, 刘城1,3, 魏巍1,2   

  1. 1. 北京理工大学机械与车辆学院 北京 100081;
    2. 北京理工大学重庆创新中心 重庆 401122;
    3. 北京理工大学长三角研究院(嘉兴) 嘉兴 314001
  • 收稿日期:2024-10-06 修回日期:2025-04-17 发布日期:2025-11-24
  • 作者简介:刘建峰,男,2000年出生。主要研究方向为多域机动平台。E-mail:liujianf_bit@foxmail.com
    魏巍(通信作者),男,1978年出生,教授,博士研究生导师。主要研究方向为多域智能车辆、流体传动与控制。E-mail:weiweibit@bit.edu.cn
  • 基金资助:
    北京市自然科学基金资助项目(3244036)。

Structural Optimization and Kinematic Analysis of Deformable Wheel-claw Configured Unmanned Platform

LIU Jianfeng1,2, MENG Qingkai1, SHU Yongjie1, KE Zhifang1, LIU Cheng1,3, WEI Wei1,2   

  1. 1. School of Machanical Engineering, Beijing Institute of Technology, Beijing 100081;
    2. Chongqing Innovation Center, Beijing Institute of Technology, Chongqing 401122;
    3. Yangtze Delta Region Academy, Beijing Institute of Technology, Jiaxing 314001
  • Received:2024-10-06 Revised:2025-04-17 Published:2025-11-24

摘要: 针对陆空两用无人平台的在复杂楼宇行驶环境中难以穿行且越障能力有限的问题,提出了一种具有大展开比特征的高通过性变形轮爪构型无人平台,可从圆轮状态切换至轮爪状态。然后建立以变形轮变形触发力矩和压力角均值最小为目标的结构参数优化模型,采用二次序列规划法(SQP)对该约束优化问题进行求解。此外,基于对单个变形轮的周期性运动分析,搭建了无人平台整机运动学模型,并通过多体动力学仿真和动作捕捉试验对理论模型进行了验证。结果表明,相较于优化前的初始结构,优化后的变形触发力矩降低了20%,压力角均值下降了38.5%,优化后的触发力矩理论值与仿真结果的误差仅为6.25%。根据优化结果得到的无人平台整机位移与速度曲线与仿真及试验结果的趋势基本一致,变形轮爪式无人平台在展开比为2.0时可越过高度为500 mm的障碍物,为后续高通过性无人平台动力学模型和轨迹优化提供了理论基础。

关键词: 陆空无人平台, 变形轮设计, 轮爪运动, 运动学分析

Abstract: To address the challenges of limited mobility and obstacle-crossing capability for land-air hybrid unmanned platforms in complex building environments, a high-mobility deformable wheel-claw unmanned platform with a large expansion ratio, capable of switching between wheel and claw states, is proposed. A structural parameter optimization model is established to minimize both the deformation trigger torque and the average pressure angle of the deformable wheels. The sequential quadratic programming (SQP) method is applied to solve this constrained optimization problem. Additionally, a kinematic model of the entire platform is developed based on periodic motion analysis of a single deformable wheel, and the theoretical model is validated through multibody dynamics simulations and motion capture experiments. The results show that, compared to the initial structure, the optimized trigger torque is reduced by 20%, and the average pressure angle is decreased by 38.5%, with only a 6.25% error between the theoretical and simulated trigger torque values. The displacement and velocity curves of the optimized platform closely align with the simulation and experimental trends, providing a theoretical foundation for further dynamic modeling and trajectory optimization of high-mobility unmanned platforms.

Key words: land and sky unmanned platform, deformed wheel legs design, claw motion, motion analysis

中图分类号: