• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 213-226.doi: 10.3901/JME.2025.21.213

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

大负载SCARA并联机器人刚度建模及性能预估

梁栋1,2, 韩志强1, 宋轶民3, 畅博彦1,2   

  1. 1. 天津工业大学机械工程学院 天津 300387;
    2. 天津市现代机电装备技术重点实验室 天津 300387;
    3. 天津大学机构理论与装备设计教育部重点实验室 天津 300350
  • 收稿日期:2025-02-20 修回日期:2025-05-07 发布日期:2025-12-27
  • 作者简介:梁栋,男,1985年出生,博士,副教授。主要研究方向为机构学与机器人学、多体系统动力学及控制。E-mail:dongliang@tiangong.edu.cn
    韩志强,男,2001年出生,硕士研究生。主要研究方向为并联机器人机构刚度建模与性能预估。E-mail:2331050761@tiangong.edu.cn
    宋轶民(通信作者),男,1971年出生,博士,教授。主要研究方向为机器人机构学、机械动力学与机械传动。E-mail:ymsong@tju.edu.cn
    畅博彦,男,1985年出生,博士,副教授。主要研究方向为机构学与机械系统动力学。E-mail:mmts_tjpu@126.com
  • 基金资助:
    国家自然科学基金资助项目(52175243, 52275027)。

Stiffness Modelling and Performance Evaluation of a Large Loading SCARA Parallel Robot

LIANG Dong1,2, HAN Zhiqiang1, SONG Yimin3, CHANG Boyan1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387;
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387;
    3. Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350
  • Received:2025-02-20 Revised:2025-05-07 Published:2025-12-27

摘要: 针对纺织、食品、物流运输等领域对高速、高精度以及大负载作业装备的需求,研究一种含闭环子结构SCARA并联机器人精细化刚度建模方法及其性能分析。首先,对该机器人进行结构描述和位置分析;其次,在螺旋理论框架下,引入虚拟弹簧法,推导主/被动平行四边形子结构的刚度矩阵,获得支链的刚度模型,进而通过刚度叠加原理,建立整机刚度模型;在此基础上,借助数值计算和有限元仿真对六组典型位姿下的线刚度和扭转刚度进行对比,结果显示相对误差均在10%以内,验证了刚度理论模型的正确性及有效性,并对姿态角为0°时工作空间不同平面内的刚度分布进行了可视化,阐明了相关变化规律;最后,为有效统一线变形和扭转变形的量纲,基于瞬时变形能构造出具有清晰物理含义的刚度性能指标,据此分析了不同姿态角下任务工作空间内的刚度性能,为该机器人的高速、高刚度一体化设计及样机开发奠定了理论基础。

关键词: SCARA并联机器人, 螺旋理论, 刚度矩阵, 虚拟弹簧法, 有限元分析

Abstract: Addressing the demands for high-speed, high-precision, and heavy-load operation equipment in fields such as textiles, food processing, and logistics, a refined stiffness modeling method and performance analysis for a SCARA parallel robot featuring closed-loop substructure within branches is investigated. Firstly, the structure and position of the robot are described and analyzed. Subsequently, within the framework of the screw theory, the virtual spring method is employed to determine the stiffness matrix of the active/passive parallelogram substructure, thereby deriving the stiffness model of the branch chain. Subsequently, the overall stiffness model of the robot is established through the principle of stiffness superposition. A comparison of linear stiffness and torsional stiffness under six typical poses is conducted using both the numerical calculations and finite element simulation. The results indicated that the relative errors are all within 10%, validating the accuracy and effectiveness of the theoretical stiffness model. Furthermore, the stiffness distribution within different planes of the workspace is visualized when the attitude angle is set at 0°, and the relevant change patterns of stiffness is elucidated. Ultimately, to effectively harmonize the dimensions of linear and torsional deformations, a stiffness performance index with distinct physical significance is defined based on instantaneous energy, by which, an analysis of stiffness performance within the task workspace under varying attitude angles is conducted, laying a theoretical foundation for the high-speed, high-stiffness integrated design and prototype development of this robot.

Key words: SCARA parallel robot, screw theory, stiffness matrix, virtual spring method, finite element analysis

中图分类号: