[1] REZMIRES D, RACOCEA C. Quasi-dynamic effects in ball bearings with 2, 3 or 4 contact points[C]// Proceedings of the 15th International Conference on Manufacturing Systems (ICMaS), Editura Academiei Române, 2006:239-242. [2] RYCHLIK A, NAPIÓRKOWSKI J. The use of friction parameters in evaluating the technical condition of rolling bearings by the quasi-dynamic method[J]. Technical Sciences, 2011, 14(1):119-127. [3] LI Junning, CHEN Wei, ZHANG Libo, et al. An improved quasi-dynamic analytical method to predict skidding in roller bearings under conditions of extremely light loads and whirling[J]. Journal of Mechanical Engineering, 2016, 62(2):86-94. [4] WANG Liqin, LI Yunfeng. Boundary for aviation bearing accelerated life test based on quasi-dynamic analysis[J]. Tribology International, 2017, 116:414-421. [5] WU Jiqiang, WANG Liqin, HE Tao, et al. Investigation on the angular contact ball bearings under low speed and heavy load with coupled mixed lubrication and quasi-dynamic analysis[J]. Lubrication Science, 2020, 32(3):108-120. [6] YU Jie, LI Songsheng, CHEN Xiaoyang, et al. Dynamic parameter analysis of spindle bearing using 3-dimension quasi-dynamic model[J]. Mathematical Problems in Engineering, 2019, 2019:7050151. [7] 史修江, 王黎钦, 古乐, 等. 基于拟动力学的航空发动机主轴球轴承热弹流润滑分析[J]. 航空动力学报, 2016, 31(1):233-240. SHI Xiujiang, WANG Liqin, GU Le, et al. Thermal elastohydrodynamic lubrication analysis of aero-engine mainshaft ball bearing based on quasi-dynamic[J]. Journal of Aerospace Power, 2016, 31(1):233-240. [8] 贾昕昱. 基于轮轨瞬态滚动接触模型的钢轨接触疲劳伤损研究[D]. 北京:中国铁道科学研究院, 2020. JIA Xinyu. Research on contact fatigue damage of rail based on wheel-rail transient rolling contact model[D]. Beijing:China Academy of Railway Sciences, 2020. [9] 汪自扬, 杨立云, 吴云霄, 等. 弯折裂纹尖端应力强度因子值的近似计算方法[J]. 工程力学, 2022, 39(9):10-19. WANG Ziyang, YANG Liyun, WU Yunxiao, et al. Study on approximate method of stress intensity factor value at bending crack tip[J]. Engineering Mechanics, 2022, 39(9):10-19. [10] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5):601-620. [11] SUTULA D, KERFRIDEN P, DAM T V, et al. Minimum energy multiple crack propagation. Part III:XFEM computer implementation and applications[J]. Engineering Fracture Mechanics, 2018, 191:257-276. [12] SUKUMAR N, MOËS N, MORAN B, et al. Extended finite element method for three-dimensional crack modelling[J]. International Journal for Numerical Methods in Engineering, 2000, 48(11):1549-1570. [13] KHAN S M A, KHRAISHEH M K. Analysis of mixed mode crack initiation angles under various loading conditions[J]. Engineering Fracture Mechanics, 2000, 67(5):397-419. [14] BOLJANOVIĆ S, MAKSIMOVIĆ S. Analysis of the crack growth propagation process under mixed-mode loading[J]. Engineering Fracture Mechanics, 2011, 78(8):1565-1576. [15] FLETCHER D I, SMITH L, KAPOOR A. Rail rolling contact fatigue dependence on friction, predicted using fracture mechanics with a three-dimensional boundary element model[J]. Engineering Fracture Mechanics, 2009, 76(17):2612-2625. [16] REN Zhida, LI Beizhi, ZHOU Qingzhi. Rolling contact fatigue crack propagation on contact surface and subsurface in mixed mode I+II+III fracture[J]. Wear, 2022, 506:204459. [17] WILSON W R D, SHEU S. Effect of inlet shear heating due to sliding on elastohydrodynamic film thickness[J]. Journal of Tribology, 1983, 105(2):187-188. |