• CN:11-2187/TH
  • ISSN:0577-6686

机械工程学报 ›› 2025, Vol. 61 ›› Issue (21): 192-203.doi: 10.3901/JME.2025.21.192

• 特邀专栏:纪念张启先院士诞辰 100 周年 • 上一篇    

扫码分享

基于误差模型与机器学习结合的2PRU-PSR并联机器人误差补偿方法

柴馨雪, 陶奕良, 祖洪飞, 徐灵敏, 李秦川   

  1. 浙江理工大学机械工程学院 杭州 310018
  • 收稿日期:2024-12-24 修回日期:2025-05-12 发布日期:2025-12-27
  • 作者简介:柴馨雪,女,1988年出生,博士,副教授。主要研究方向为并联机器人机构学。E-mail:chaixx@zstu.edu.cn
    陶奕良,男,2000年出生,硕士研究生。主要研究方向为并联机器人误差建模与运动学标定。E-mail:m13330300111@163.com
    祖洪飞,男,1985年出生,博士,特聘副教授。主要研究方向为机器人性能检测,智能检测等。E-mail:zuhongfei@zstu.edu.cn
    徐灵敏(通信作者),男,1993年出生,博士,教授。主要研究方向为并/混联机器人机构构型综合、力学建模及性能设计、装备研发及应用。E-mail:xulm@zstu.edu.cn
    李秦川,男,1975年出生,博士,教授。主要研究方向为并联机器人机构学和应用技术。E-mail:lqchuan@zstu.edu.cn
  • 基金资助:
    国家自然科学基金(52205023, 51935010)、中国科协青年人才托举工程(2023QNRC001)、浙江省自然科学基金(LMS25E050002)、浙江理工大学科研启动基金(24242189-Y)和浙江省教育厅一般科研(y202456192)资助项目。

Error Compensation Method of 2PRU-PSR Parallel Robot Based on Error Model and Machine Learning

CHAI Xinxue, TAO Yiliang, ZU Hongfei, XU Lingmin, LI Qinchuan   

  1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018
  • Received:2024-12-24 Revised:2025-05-12 Published:2025-12-27

摘要: 运动学标定是并联机器人精度保障的重要手段。现有的标定方法只能单独对几何误差或非几何误差进行补偿,效率较低,并且未考虑由传统误差模型局限性所导致的部分无法辨识的几何误差影响。针对以上问题,提出了一种基于误差模型与机器学习结合的并联机器人误差补偿方法,并应用于2PRU-PSR并联机器人(P:移动副,R:转动副,U:虎克铰,S:球铰)。首先,基于闭环矢量法建立2PRU-PSR并联机器人的运动学模型,利用矢量微分法建立几何误差模型。其次,应用最小二乘平方和优化函数lsqnonlin对几何参数进行辨识并完成部分几何误差补偿。然后,针对标定后剩余部分无法辨识的几何误差和非几何误差,分别采用BP(Back propagation)神经网络和高斯过程回归(Gaussian process regression, GPR)模型进行误差预测与补偿。最后,通过仿真和实验验证了该方法的正确性和有效性。实验结果表明经过运动学标定并结合BP神经网络预测补偿后2PRU-PSR并联机器人末端平均位置误差由5.121 4 mm减小至0.105 0 mm,平均姿态误差由0.027 6 rad减小至0.003 80 rad;结合GPR模型预测补偿后末端平均位置误差由5.121 4 mm减小至0.091 8 mm,平均姿态误差由0.027 6 rad减小至0.005 68 rad。该方法同样适用于其他并联机器人的误差补偿,以提高末端精度。

关键词: 并联机器人, 几何误差, 运动学标定, 非几何误差, 机器学习

Abstract: Kinematic calibration plays a crucial role in ensuring the accuracy of parallel robots. However, it solely compensates for geometric errors or non-geometric errors without considering the impact of unidentifiable geometric errors caused by the limitations of traditional error models. To address these issues, an error compensation method that combines error model and machine learning for parallel robots is proposed, and it is applied to a 2PRU-PSR parallel robot (where P denotes a prismatic joint, R denotes a revolute joint, U denotes a universal joint, and S denotes a spherical joint). Firstly, the kinematic model of the 2PRU-PSR parallel robot is established based on the closed-loop vector method. The geometric error model is established by the vector differential method. Secondly, the least square optimization function lsqnonlin method is employed to identify the geometric parameters and accomplished some parts of geometric errors compensation. Then, a back propagation (BP) neural network and Gaussian process regression (GPR) model is utilized to predict and compensate for the rest of unidentifiable geometric errors and non-geometric errors. Finally, the proposed method is validated correct and effective through simulation and experimentation. The experimental results indicate that after applying kinematic calibration combined with BP neural network for error compensation, the average position error of the end pose of 2PRU-PSR parallel robot decreases from 5.121 4 mm to 0.105 0 mm, the average orientation error reduces from 0.027 6 rad to 0.003 80 rad; When it combined with the GPR model, the average position error decreases from 5.121 4 mm to 0.0918 mm, the average orientation error reduces from 0.027 6 rad to 0.005 68 rad. This method is also suitable for error compensation of other parallel robots to improve the precision of end effectors.

Key words: parallel robot, geometric error, kinematic calibration, non-geometric error, machine learning

中图分类号: